# A simple trace formula

- Received:

DOI: 10.1007/BF02796122

- Cite this article as:
- Flicker, Y.Z. & Kazhdan, D.A. J. Anal. Math. (1988) 50: 189. doi:10.1007/BF02796122

- 12 Citations
- 94 Downloads

## Abstract

The Selberg trace formula is of unquestionable value for the study of automorphic forms and related objects. In principal it is a simple and natural formula, generalizing the Poisson summation formula, relating traces of convolution operators with orbital integrals. This paper is motivated by the belief that such a fundamental and natural relation should admit a*simple and short* proof. This is accomplished here for test functions with a single supercusp-component, and another component which is spherical and “sufficiently-admissible” with respect to the other components. The resulting trace formula is then use to sharpen and extend the metaplectic correspondence, and the simple algebras correspondence, of automorphic representations, to the context of automorphic forms with a*single* supercuspidal component, over any global field. It will be interesting to extend these theorems to the context of all automorphic forms by means of a simple proof. Previously a simple form of the trace formula was known for test functions with two supercusp components; this was used to establish these correspondences for automorphic forms with two supercuspidal components. The notion of “sufficiently-admissible” spherical functions has its origins in Drinfeld's study of the reciprocity law for GL(2) over a function field, and our form of the trace formula is analogous to Deligne's conjecture on the fixed point formula in étale cohomology, for a correspondence which is multiplied by by a sufficiently high power of the Frobenius, on a separated scheme of finite type over a finite field. Our trace formula can be used (see [FK′]) to prove the Ramanujan conjecture for automorphic forms with a supercuspidal component on GL(*n*) over a function field, and to reduce the reciprocity law for such forms to Deligne's conjecture. Similar techniques are used in ['t'F] to establish base change for GL (*n*) in the context of automorphic forms with a single supercuspidal component. They can be used to give short and simple proofs of rank one lifting theorems for*arbitrary* automorphic forms; see [″F] for base change for GL(2), [F′] for base change for*U*(3), and [′F′] for the symmetric square lifting from SL(2) to PGL(3).