Hassell, A. & Vasy, A. J. Anal. Math. (1999) 79: 241. doi:10.1007/BF02788243

Abstract

In this paper, we consider a compact manifold with boundaryX equipped with a scattering metricg as defined by Melrose [9]. That is,g is a Riemannian metric in the interior ofX that can be brought to the formg=x^{−4} dx^{2}+x^{−2 h’} near the boundary, wherex is a boundary defining function andh’ is a smooth symmetric 2-cotensor which restricts to a metrich on ϖX. LetH=Δ+V, whereV∈x^{2}C^{∞} (X) is real, soV is a ‘short-range’ perturbation of Δ. Melrose and Zworski started a detailed analysis of various operators associated toH in [11] and showed that the scattering matrix ofH is a Fourier integral operator associated to the geodesic flow ofh on ϖX at distance π and that the kernel of the Poisson operator is a Legendre distribution onX×ϖX associated to an intersecting pair with conic points. In this paper, we describe the kernel of the spectral projections and the resolvent,R(σ±i0), on the positive real axis. We define a class of Legendre distributions on certain types of manifolds with corners and show that the kernel of the spectral projection is a Legendre distribution associated to a conic pair on the b-stretched productX_{b}^{2} (the blowup ofX^{2} about the corner, (ϖX)^{2}). The structure of the resolvent is only slightly more complicated.

As applications of our results, we show that there are ‘distorted Fourier transforms’ forH, i.e., unitary operators which intertwineH with a multiplication operator and determine the scattering matrix; we also give a scattering wavefront set estimate for the resolventR(σ±i0) applied to a distributionf.