Skip to main content
Log in

The effects of thin layer sand renourishment on tidal marsh processes: Masonboro Island, North Carolina

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The objective of this study was to determine if the placement of dredged material on sediment-starved back barrier marshes in southeastern North Carolina could offset submergence without negatively affecting function. Clean sediment was placed in thickness from 0 to 10 cm, on deteriorated and non-deteriorated marsh plots. Original stem densities were greater, in non-deteriorated plots (256 stems m−2) compared to deteriorated sites (149 stems m−2). By the second growing season (after sediment additions), stem densities in the deteriorated plots (308 stems m−2) approached levels in the non-deteriorated plots (336 stems m−2). Sediment additions to, both nos-deteriorated and deteriorated plots resulted in a higher redox potential with plots receiving the most sediment exhibiting the highest Eh values. In deteriorated plots, placement of dredged material had the greatest effect on plant density, but also affected soil oxidation-reduction potential and sediment deposition (or mobility). Following sediment placement, substrate texture and composition incrementally returned to prefill conditions due to a combination of bioturbation and sedimentation. Where infaunal differences occurred, they were generally less abundant in deteriorated plots, but responses to sediment addition were variable. Sediment addition had little effect on the non-deteriorated plots, suggesting that the disposal of certain types of dredged material in marshes may be useful to mitigate the effects of marsh degradation without adversely affecting non-deteriorating marsh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Becker, M. E. 1996. The effects of nutrient loading on benthic microalgal biomass and taxonomic composition. M.S. Thesis, University of North Carolina at Wilmington, Wilmington, North Carolina.

    Google Scholar 

  • Cahoon, D. R. andJ. H. Cowan, Jr. 1988. Environmental impacts and regulatory policy implications of spray disposal of dredged material in Lousiana wetlands.Coastal Management 16:341–362.

    Google Scholar 

  • Cahoon, L. B., J. E. Nearhoof, andC. L. Tilton. 1999. Sediment grain size effect on benthic microalgal biomass in shallow aquatic ecosystems.Estuaries 22:735–741.

    Article  Google Scholar 

  • Davis, M. W. andH. Lee. 1983. Colonization of sediment-associated microalgae and effects of estuarine infauna on microalgal production.Marine Ecology Progress Series 11:227–232.

    Article  Google Scholar 

  • DeLaune, R. D., S. R. Pezeshki, J. H. Pardue, J. H. Whitcomb, andW. H. Patrick, Jr. 1990. Some influences of sediment addition to a deteriorating salt marsh in the Mississippi River deltaic Plain: A pilot study.Journal of Coastal Research 6: 181–188.

    Google Scholar 

  • DeLaune, R. D., C. J. Smith, andW. H. Patrick, Jr. 1983. Relationship of marsh elevation, redox potential, and sulfide toSpartina alterniflora productivity.Soil Science Society of American Journal 47:930–935.

    Article  CAS  Google Scholar 

  • Faulkner, S. P., W. H. Patrick, Jr, andR. P. Gambrell. 1989. Field techniques for measuring wetland soil parameters.Soil Science Society of American Journal 53:883–890.

    Article  CAS  Google Scholar 

  • Folk, R. L. 1980. Petrology of Sedimentary Rocks, 1st edition. Hemphill Publishing, Austin, Texas.

    Google Scholar 

  • Ford, M. A., D. R. Cahoon, andJ. C. Lynch. 1999. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material.Ecological Engineering 12:189–205.

    Article  Google Scholar 

  • Freeman, Jr,D. B. 1989. The distribution and trophic significance of benthic microalgae in Masonboro Sound, North Carolina. M.S. Thesis, University of North Carolina Wilmington, Wilmington, North Carolina.

    Google Scholar 

  • Frey, R. W. andP. B. Basan. 1985. Coastal salt marshes, p. 225–301.In R. A. Davis Jr. (ed.), Coastal Sedimentary Environments, 2nd edition. Springer-Verlag, New York.

    Google Scholar 

  • Friedrichs, C. T. andJ. E. Perry. 2001. Tidal salt marsh morphodynamics.Journal of Coastal Research 27:6–36.

    Google Scholar 

  • Hackney, C. T. andW. J. Cleary. 1987. Saltmarsh loss in southeastern North Carolina lagoons: Importance of sea level rise and inlet dredging.Journal of Coastal Research 3: 93–97.

    Google Scholar 

  • Howes, B. L., R. W. Howarth, J. M. Teal, andI. Valiela. 1981. Oxidation-reduction potentials in a salt marsh: Spatial patterns and interactions with primary production.Limnology and Oceanography 26:350–360.

    Google Scholar 

  • Kennett, D. M. andP. E. Hargraves. 1985. Benthic diatoms and sulfide fluctuations: Upper basin of Pettaquamscutt River, Rhode Island.Estuarine Coastal and Shelf Science 21:577–586.

    Article  CAS  Google Scholar 

  • Koning, C. O. 2004. Impacts of small amounts of sandy sediment on wetland soils and vegetation: Results from field and greenhouse studies.Wetlands 24:295–308.

    Article  Google Scholar 

  • Langmuir, D. 1971. Eh-pH determination, p. 597–635.In R. E. Carver (ed.), Procedures in Sedimentary Petrology, 1st edition. Interscience Publishers, New York.

    Google Scholar 

  • Leonard, L. A. andM. E. Luther. 1997. Flow hydrodynamics in tidal marsh canopies.Limnology and Oceanography 40:1474–1484.

    Article  Google Scholar 

  • Mckee, K. L. andI. A. Mendelssohn. 1988.Spartina alterniflora dieback in Louisiana: Time-course investigation of soil water-logging effects.Journal of Ecology 76:509–521.

    Article  Google Scholar 

  • Mitsch, W. J. andJ. G. Gosselink. 1993. Wetlands, 2nd edition. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Nyman, J. A., R. D. Delaune, andW. H. Patrick, Jr. 1990. Wetland soil formation in the rapidly subsiding Mississippi River deltaic plain: Mineral and organic matter relationships.Estuarine Coastal and Shelf Science 31:57–69.

    Article  Google Scholar 

  • Posey, M. H. 1990. Functional approaches to soft-substrate communities: How useful are they?Reviews in Aquatic Science 2/3:343–356.

    Google Scholar 

  • Reed, D. J. 1989. Patterns of sediment deposition in subsiding coastal salt marshes: The role of winter storms.Estuaries 12:222–227.

    Article  Google Scholar 

  • Reed, D. J. 1990. The impact of sea-level rise on coastal salt marshes.Progress in Physical Geography 14:465–481.

    Article  Google Scholar 

  • Sigmon, D. E. 1995. The effects of benthic microalgae on sediment nutrient fluxes. M.S. Thesis, University of North Carolina Wilmington, Wilmington, North Carolina.

    Google Scholar 

  • Slocum, M. G., I. A. Mendelssohn, andN. L. Kuhn. 2005. Effect of sediment slurry enrichment on salt marsh rehabilitation: Plant and soil responses over seven years.Estuaries 28: 519–528.

    Article  CAS  Google Scholar 

  • Stevenson, J. C., M. S. Kearney, andE. C. Pendleton. 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system.Marine Geology 67:213–235.

    Article  Google Scholar 

  • Stevenson, J. C., L. G. Ward, andM. S. Kearney. 1986. Vertical accretion in marshes with varying rates of sea level rise, p. 241–259.In D. A. Wolfe (ed.), Estuarine Variability, 1st edition. Academic Press, New York.

    Google Scholar 

  • Whitney, D. E. andW. M. Darley. 1979. A method for the determination of chlorophylla in samples containing degradation products.Limnology and Oceanography 24:183–186.

    Article  CAS  Google Scholar 

  • Wilber, P. 1992a. Case studies of the thin-layer disposal of dredged material—Gull Rock, North Carolina.Environmental Effects of Dredging D-92-3.

  • Wilber, P. 1992b. Case studies of the thin-layer disposal of dredged material—Fowl River, Alabama.Environmental Effects of Dredging D-92-5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex L. Croft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croft, A.L., Leonard, L.A., Alphin, T.D. et al. The effects of thin layer sand renourishment on tidal marsh processes: Masonboro Island, North Carolina. Estuaries and Coasts: J ERF 29, 737–750 (2006). https://doi.org/10.1007/BF02786525

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786525

Keywords

Navigation