, Volume 113, Issue 1, pp 61-93

Algebraic modular forms

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In this paper, we develop an algebraic theory of modular forms, for connected, reductive groupsG overQ with the property that every arithmetic subgroup Γ ofG(Q) is finite. This theory includes our previous work [15] on semi-simple groupsG withG(R) compact, as well as the theory of algebraic Hecke characters for Serre tori [20]. The theory of algebraic modular forms leads to a workable theory of modular forms (modp), which we hope can be used to parameterize odd modular Galois representations.

The theory developed here was inspired by a letter of Serre to Tate in 1987, which has appeared recently [21]. I want to thank Serre for sending me a copy of this letter, and for many helpful discussions on the topic.