Israel Journal of Mathematics

, Volume 100, Issue 1, pp 125–161

Intrinsic ergodicity of smooth interval maps


DOI: 10.1007/BF02773637

Cite this article as:
Buzzi, J. Isr. J. Math. (1997) 100: 125. doi:10.1007/BF02773637


We generalize the technique of Markov Extension, introduced by F. Hofbauer [10] for piecewise monotonic maps, to arbitrary smooth interval maps. We also use A. M. Blokh’s [1] Spectral Decomposition, and a strengthened version of Y. Yomdin’s [23] and S. E. Newhouse’s [14] results on differentiable mappings and local entropy.

In this way, we reduce the study ofCr interval maps to the consideration of a finite number of irreducible topological Markov chains, after discarding a small entropy set. For example, we show thatC maps have the same properties, with respect to intrinsic ergodicity, as have piecewise monotonic maps.

Copyright information

© Hebrew University 1997

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité Paris-SudOrsayFrance