Israel Journal of Mathematics

, Volume 69, Issue 1, pp 25–45

Degenerate principal series and invariant distributions

Authors

  • Stephen S. Kudla
    • University of Maryland
  • Stephen Rallis
    • Ohio State University
Article

DOI: 10.1007/BF02764727

Cite this article as:
Kudla, S.S. & Rallis, S. Israel J. Math. (1990) 69: 25. doi:10.1007/BF02764727

Abstract

In this article we give a description of the tempered distributions on a matrix spaceMm,n(R) which are invariant under the linear action of an orthogonal groupO(p, q),p+q=m. We also determine the points of reducibility of the degenerate principal series of the metaplectic group Mp(n,R) induced from a character of the maximal parabolic with GL(n,R) as Levi factor. Finally, we identify the representation of MP(n,R) which is associated to the trivial representation ofO(p, q) under the archimedean theta correspondence.

Copyright information

© The Weizmann Science Press of Israel 1990