Israel Journal of Mathematics

, Volume 22, Issue 3, pp 208–213

Goldschmidt’s 2-signalizer functor theorem

  • Helmut Bender

DOI: 10.1007/BF02761590

Cite this article as:
Bender, H. Israel J. Math. (1975) 22: 208. doi:10.1007/BF02761590


A solvableA-signalizer functorϑ assigns to any non-identity elementx of the abelian 2-subgroupA of the finite groupG anA-invariant solvable 2′-subgroupθ(CG(x)) ofCG(x) such thatθ(CG(x)) ∩CG(y) ⊆ϑ(CG(y)) for allx, y ∈ A#.θ is called complete ifG has a solvableA-invariant 2′-subgroupK=θ(G) such thatCk(x)=θ(CG(x)) for everyx ∈ A#.

This note contains an alternate proof of the completeness theorem below.

Copyright information

© Hebrew University 1976

Authors and Affiliations

  • Helmut Bender
    • 1
  1. 1.Mathematisches Seminar der Universität23 KielFederal Republic of Germany