Whitehead groups may be not free, even assuming CH, I Authors Saharon Shelah Institute of Mathematics The Hebrew University of Jerusalem Article

Received: 20 December 1976 DOI :
10.1007/BF02759809

Cite this article as: Shelah, S. Israel J. Math. (1977) 28: 193. doi:10.1007/BF02759809
Abstract We prove the consistency with ZFC+G.C.H. of an assertion, which implies several consequences of\(MA + 2^{\aleph _0 } > \aleph _1 \) , which\(\diamondsuit \aleph _1 \) implies their negation.

The author would like to thank the United States-Israel Binational Science Foundation for partially supporting this research by grant 1110.

References 1.

U. Avraham and S. Shelah,A generalization of MA consistent with CH , mimeograph, circulated in fall 1975.

2.

U. Avraham, K. Devlin and S. Shelah, in preparation.

3.

K. Devlin and H. Johnstraten,The Souslin Problem , Springer-Verlag Lecture Notes405 , 1974.

4.

K. Devlin and S. Shelah,A weak form of ◊ which follows from a weak version of CH , to appear in Israel J. Math.

4a.

K. Devlin and S. Shelah,A note on the normal Moore space conjecture , to appear in Canad. J. Math.

5.

P. Eklof,

Whitehead problem is undecidable , Amer. Math. Monthly 83 (1976), 173–197.

CrossRef MathSciNet 6.

A. Hajnal and A. Mate,Set mappings partitions and chromatic numbers , in Proc. Logic Colloquium, Bristol, 1973 (Rose and Shepherdson, eds.), Studies in Logic and the Foundations of Mathematics, Vol. 80, North-Holland Publ. Co., 1975, pp. 347–380.

7.

J. T. Jech,

Trees , J. Symbolic Logic

36 (1971), 1–14.

MATH CrossRef MathSciNet 8.

D. Martin and R. M. Solovay,

Internal Cohen extensions , Ann. Math. Logic,

2 (1970), 143–178.

MATH CrossRef MathSciNet 9.

S. Shelah,

Infinite abelian groups. Whitehead problem and some constructions , Israel J. Math.,

18 (1974), 243–256.

MATH MathSciNet 10.

S. Shelah,Notes in partition calculus , Vol III (Colloquia Mathematica A Societatis Janos Bolayi 10), to Paul Erdös on his 60th birthday (A. Hajnal, R. Rodo and V. T. Sos, eds.), North-Holland Publ. Co., Amsterdam, London, 1975, pp. 1257–1276.

11.

S. Shelah,Two theorems on abelian groups , in preparation.

12.

S. Shelah,Whitehead group may not be free, even assuming CH, II , in preparation.

13.

S. Shelah,Whitehead problem under CH and other results , Notices Amer. Math. Soc.23 (1976), A-650.

14.

R. M. Solovay and S. Tennenbaum,

Iterated Cohen extensions and Souslin’s problem , Ann. of Math.

94 (1971), 201–245.

CrossRef MathSciNet