Israel Journal of Mathematics

, Volume 1, Issue 3, pp 156–160

On the structure of linear graphs

Authors

  • P. Erdös
    • University of Michigan
Article

DOI: 10.1007/BF02759702

Cite this article as:
Erdös, P. Israel J. Math. (1963) 1: 156. doi:10.1007/BF02759702

Abstract

Denote byG(n; m) a graph ofn vertices andm edges. We prove that everyG(n; [n 2/4]+1) contains a circuit ofl edges for every 3 ≦l<c 2 n, also that everyG(n; [n 2/4]+1) contains ak e(u n, un) withu n=[c 1 logn] (for the definition ofk e(u n, un) see the introduction). Finally fort>t 0 everyG(n; [tn 3/2]) contains a circuit of 2l edges for 2≦l<c 3 t 2.

Copyright information

© Hebrew University 1963