, Volume 25, Issue 3-4, pp 287-304

Provability interpretations of modal logic

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We consider interpretations of modal logic in Peano arithmetic (P) determined by an assignment of a sentencev * ofP to each propositional variablev. We put (⊥)*=“0 = 1”, (χ → ψ)* = “χ* → ψ*” and let (□ψ)* be a formalization of “ψ)* is a theorem ofP”. We say that a modal formula, χ, isvalid if ψ* is a theorem ofP in each such interpretation. We provide an axiomitization of the class of valid formulae and prove that this class is recursive.