, Volume 54, Issue 5, pp 545-552

Photosynthesis-irradiance relationship of phytoplankton and primary production in the vicinity of Kuroshio warm core ring in spring

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The light-saturated maximum value (P B max) and initial slope (α) of the photosynthesis-irradiance (P-E) curve were examined in a warm streamer, a cold streamer and a warm core ring off the Sanriku area in the subarctic western North Pacific Ocean during an ADEOS/OCTS Sanriku field campaign in early May 1997. BothP B max and α were within the ranges of temperate populations. A regional difference was apparent inP B max: populations in the warm streamer tended to show higher value ranging between 1.92 and 4.74 mgC (mgChla)−1h−1 than those in the cold streamer and the warm core ring (1.35–2.87 mgC (mgChla)−1h−1). A depth variation was also observed in α in both the warm streamer and the warm core ring: shallow populations tended to have lower α than deep populations. The depth variations in bothP B max and α resulted in a lower light intensity of the light saturation in a deeper population than that of a shallower one. These depth-related variations in the P-E parameters were likely a manifestation of “shade-adaptation” of photosynthesis. Photoinhibition was not observed over in situ surface light intensity varying below ca 1600 μmol photon m−2s−1. Water-column primary productivity was biooptically estimated to be 233 to 949 mgC m−2d−1 using vertical distributions of the P-E parameters, chlorophylla, phytoplankton light absorption and underwater irradiance. Applicability of surface data sets for estimation of water-column productivity is discussed.