Article

Journal of Genetics

, Volume 82, Issue 3, pp 163-177

First online:

Hybridization, transgressive segregation and evolution of new genetic systems inDrosophila

  • H. A. RanganathAffiliated withDrosophila Stock Centre, Department of Studies in Zoology, University of Mysore Email author 
  • , S. ArunaAffiliated withDrosophila Stock Centre, Department of Studies in Zoology, University of Mysore

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Introgressive hybridization facilitates incorporation of genes from one species into the gene pool of another. Studies on long-term effects of introgressive hybridization in animal systems are sparse.Drosophila nasuta (2n = 8) andD. albomicans (2n = 6)—a pair of allopatric, morphologically almost identical, cross-fertile members of thenasuta subgroup of theimmigrans species group-constitute an excellent system to analyse the impact of hybridization followed by transgressive segregation of parental characters in the hybrid progeny. Hybrid populations ofD. nasuta andD. albomicans maintained for over 500 generations in the laboratory constitute new recombinant hybrid genomes, here termed cytoraces. The impact of hybridization, followed by introgression and transgressive segregation, on chromosomal constitution and karyotypes, some fitness parameters, isozymes, components of mating behaviour and mating preference reveals a complex pattern of interracial divergence among parental species and cytoraces. This assemblage of characters in different combinations in a laboratory hybrid zone allows us to study the emergence of new genetic systems. Here, we summarize results from our ongoing studies comparing these hybrid cytoraces with the parental species, and discuss the implications of these findings for our understanding of the evolution of new genetic systems.

Keywords

Drosophila nasuta Drosophila albomicans hybridization cytoraces new genetic systems