[A-L-R]

M. Aizenman, J. L. Lebowitz, D. Ruelle, Some rigorous results on the Sherrington-Kirkpatrick spin glass model,

*Commun. Math. Phys.*
**112** (1987), 3–20.

MATHCrossRefMathSciNet [A-S]

N. Alon, J. Spencer,*The Probabilistic Method*, Wiley, 1991.

[A-M]

D. Amir, V. D. Milman, Unconditional and symmetric sets in

*n*-dimensional normed spaces,

*Israel J. Math.*
**37** (1980), 3–20.

MATHMathSciNet [B1]

B. Bollobás, The chromatic number of random graphs,

*Combinatorica*
**8** (1988), 49–55.

MATHCrossRefMathSciNet [B2]

B. Bollabás, Random graphs revisited,*Proceedings of Symposia on Applied Mathematics*, Vol. 44, 1991, 81–98.

[B-B]

B. Bollobás, G. Brightwell, The height of a random partial order: Concentration of Measure,

*Annals of Applied Probab*.

**2** (1992), 1009–1018.

MATH [C-L]

E. G. Coffman, Jr.,G. S. Lucker,*Probabilistic Analysis of Packing and Partitioning Algorithms*, Wiley, 1991.

[C-N]

F. Comets, J. Neveu, The Sherrington-Kirkpatrick Model of Spin Classes and Stochastic Calculus: the high temperature case,

*Comm. Math. Phys.*
**166** (1995), 549–564.

MATHCrossRefMathSciNet [D-MS]

S. Dilworth, S. Montgomery-Smith, The distribution of vector-valued Rademacher series,

*Ann. Probab.*
**21** (1993), 2046–2052.

MATHMathSciNet [F]

A. M. Frieze, On the length of the longest monotone subsequence in a random permutation,

*Ann. Appl. Prob.*
**1** (1991), 301–305.

MATHMathSciNet [G-M]

M. Gromov, V. D. Milman, A topological application of the isoperimetric inequality,

*Amer. J. Math.*
**105** (1983), 843–854.

MATHCrossRefMathSciNet [Har]

L. H. Harper, Optimal numbering and isoperimetric problems on graphs,*J. Comb. Theory* (1966), 385–395.

[H]

W. Hoeffding, Probability inequalities for sums of bounded random variables,

*J. Amer. Statist. Assoc.*
**58** (1963), 13–30.

MATHCrossRefMathSciNet [J]

S. Janson, Poisson approximation for large deviations,

*Random Structures and Algorithms*
**1** (1990), 221–290.

MATHCrossRefMathSciNet [J-S]

W. Johnson, G. Schechtman, Remarks on Talagrand’s deviation inequality for Rademacher’s functions,

*Lecture Notes in Math.*
**1470**, Springer Verlag, 1991, 72–77.

MathSciNet [Ka]

R. M. Karp, An upper bound on the expected cost of an optimal assignment, in*Discrete Algorithm and Complexity: Proceedings of the Japan-US joint Seminar*, Academic Press, 1987, 1–4.

[K1]

H. Kesten, Aspects of first-passage percolation, Ecole d’Eté de Probabilité de Saint-Flour XIV,

*Lecture Notes in Math.*
**1180**, 125–264, Springer Verlag, 1986, 125–264.

MathSciNet [K2]

H. Kesten, On the speed of convergence in first passage percolation,

*Ann. Applied Probab.*
**3** (1993), 296–338.

MATHMathSciNet [K-S]

R. M. Karp, J. M. Steele, Probabilistic analysis of heuristics, in*The Traveling Salesman Problem*, John Wiley and Sons, 1985, 181–205.

[Lea]

J. Leader, Discrete isoperimetric inequalities,

*Proceedings of Symposia on Applied Mathematics*, Vol. 44, 1991, 57–80.

MathSciNet [L]

M. Ledoux,*Gaussian randomization and the law of the iterated logarithm in type 2 Banach spaces*, Unpublished manuscript, 1985.

[L-T1]

M. Ledoux, M. Talagrand, Characterization of the law of the iterated logarithm in Banach spaces,

*Ann. Probab.*
**16** (1988), 1242–1264.

MATHMathSciNet [L-T2]

M. Ledoux, M. Talagrand,*Probability in Banach Spaces*, Springer Verlag, 1991.

[Lu]

T. Luczak, The chromatic number of Random graphs,

*Combinatorica*
**11** (1991), 45–54.

MATHCrossRefMathSciNet [Mau1]

B. Maurey, Construction de suites symétriques,

*Comptes Rendus Acad. Sci. Paris*
**288** (1979), 679–681.

MATHMathSciNet [Mau2]

B. Maurey, Some deviation inequalities,

*Geometric and Functional Analysis*
**1** (1991), 188–197.

MATHCrossRefMathSciNet [McD]

C. McDiarmid, On the method of bounded differences, in*Survey in Combinatorics* (J. Simons, Ed.), London Mathematical Society Lecture Notes, Vol. 141, Cambridge Univ. Press, London/New York, 1989, 148–188.

[M-H]

C. McDiarmid, RyanHayward, Strong concentration for Quicksort,*Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 1992, 414–421.

[M-S]

V. D. Milman, G. Schechtman, Asymptotic theory of finite dimensional normed spaces,*Lecture Notes in Math.*
**1200**, Springer Verlag, 1986.

[Mi1]

V. D. Milman, A new proof of the theorem of A. Dvoretzky on sections of convex bodies,

*Func. Anal. Appl.*
**5** (1971), 28–37.

MathSciNet [Mi2]

V. D. Milman, Asymptotic properties of functions of several variables defined on homogenous spaces,

*Soviet. Math Dokl.*
**12** (1971), 1277–1491.

MathSciNet [Mi3]

V. D. Milman, The heritage of P. Lévy in geometrical functional analysis,

*Astérisque*
**157/158** (1988), 273–301.

MathSciNet [P]

G. Pisier, Probabilistic methods in the geometry of Banach spaces. Probability and Analysis, Varena (Italy) 1985,

*Lecture Notes in Math.*
**1206**, Springer Verlag, 1986, 167–241.

MathSciNet [R1]

W. Rhee, On the fluctuations of the stochastic traveling salesperson problem,

*Math. of Operation Research*
**13** (1991), 482–489.

MathSciNetCrossRef [R2]

W. Rhee, A matching problem and subadditive Euclidean functionals,

*Ann. Applied Probab.*
**3** (1993), 794–801.

MATHMathSciNet [R3]

W. Rhee, On the fluctuations of simple matching,

*Oper. Res. Letters*
**16** (1994), 27–32.

MATHCrossRefMathSciNet [R4]

W. Rhee, Inequalities for the Bin Packing Problem III,

*Optimization*
**29** (1994), 381–385.

MATHCrossRefMathSciNet [Ro]

J. Rosinski, Remarks on a Strong Exponential Integrability of Vector Valued Random Series and Triangular Arrays,*Ann. Probab.*, to appear.

[R-T]

W. Rhee, M. Talagrand, A sharp deviation inequality for the stochastic traveling salesman problem

*Ann. Probab.*
**17** (1989), 1–8.

MATHMathSciNet [S]

G. Schechtman, Levy type inequality for a class of metric spaces, Martingale Theory in Harmonic analysis and Banach spaces, Cleveland 1981,

*Lecture Note in Math.*
**939**, Springer Verlag, 1981, 211–215.

MathSciNet [S-S]

E. Shamir, J. Spencer, Sharp concentration of the chromatic number of random graphs G

_{n, p},

*Combinatorica*
**7** (1987), 121–129.

MATHCrossRefMathSciNet [T1]

M. Talagrand, An isoperimetric theorem on the cube and the Kintchine Kahane inequalities,

*Proc. Amer. Math. Soc.*
**104** (1988), 905–909.

MATHCrossRefMathSciNet [T2]

M. Talagrand, Isoperimetry and integrability of the sum of independent Banach space valued random variables,

*Ann. Probab.*
**17** (1989), 1546–1570.

MATHMathSciNet [T3]

M. Talagrand, A new isoperimetric inequality for product measure, and the tails of sums of independent random variables,

*Geometric and Functional Analysis*
**1** (1991), 211–223.

MATHCrossRefMathSciNet [T4]

M. Talagrand, A new isoperimetric inequality for product measure, and the concentration of measure phenomenon, Israel Seminar (GAFA),

*Lecture Notes in Math.*
**1469**, Springer Verlag, 1991, 94–124.

CrossRefMathSciNet [T5]

M. Talagrand, Regularity of infinitely divisible processes,

*Ann. Probab.*
**21** (1993), 362–432.

MATHMathSciNet [T6]

M. Talagrand, Supremum of some canonical processes,

*Amer. J. Math.*
**116** (1994), 295–314.

CrossRefMathSciNet [T7]

M. Talagrand, New concentration inequalities, in preparation.

[W]

D. W. Walkup, On the expected value of a random assignment problem,

*SIAM J. Comput.*
**8** (1979), 440–442.

MATHCrossRefMathSciNet [Y]

V. V. Yurinskii, Exponential bounds for large deviations,

*Theor. Prob. Appl.*
**19** (1974), 154–155.

CrossRef