, Volume 28, Issue 3, pp 473-485

Macrozooplankton and micronekton of the lower San Francisco estuary: Seasonal, interannual, and regional variation in relation to environmental conditions

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Macrozooplankton and micronekton are intermediaries linking lower trophic levels (e.g., phytoplankton and mesozooplankton) to higher ones (e.g., fishes and birds). These organisms have not been extensively studied in the San Francisco Estuary (SFE), California. The objective of this study was to determine the distribution and abundance of macrozooplankton and micronekton in the SFE and to describe how these vary seasonally, interannually, and regionally in relation to environmental variables. Water column macrozooplankton and micronekton were sampled monthly from September 1997 to December 2000 at 6 stations spanning North, Central, and South Bays using a Methot Trawl. The macrozo oplankton and micronekton in the lower SFE were dominated by 4 fishes and 7 invertebrates that comprised 98% of the total catch. Correspondence analyses revealed 4 groups of species that exhibited similar patterns of distribution and abundance. The assemblages changed between the wet and dry seasons and with distance from the coastal ocean. Based on abundance patterns, the dominant taxa in the lower SFE can be classified as: organisms spawned from common members of neritic assemblages that use mostly North Bay and that are abundant during the dry season (Clupea pallasi, Spirinchus thaleichthys, Porichthys notates); estuarine-dependent organisms with broad distributions in the estuary year-round (Crangon franciscorum, Crangon nigricauda, Engraulis mordax); resident species remaining within the estuary but occurring mostly in South Bay during the wet season (Palaemon macrodactlyus, Synidotea laticauda, Neomysis kadiakensis); and gelatinous species (Pleurobrachia bachei, Polyorchis spp.) occuring in all three bays with a single peak in abundance in December and January in North and South Bays. The variation in distribution, abundance, and composition of macrozooplankton and micronekton was related to life history strategies, distance from the coastal ocean, and season.