, Volume 41, Issue 3, pp 206-228

Results of investigation of the langmuir and upper-hybrid plasma turbulence evolution by means of stimulated ionospheric emission

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The results of investigations of the temporal evolution of high-frequency plasma turbulence obtained by measurements of stimulated ionospheric emission (SIE) features for different stages of interaction of powerful radio emission, with an ionospheric F region plasma are presented. It is found that the relaxation time decreased up to 2–4 times with increase in the pump duration and pumping power under the conditions of striction parametric instability (excitation of Langmuir plasma turbulence) over times t≤2.00 ms. A similar decrease of the SIE relaxation time was also observed under the conditions of thermal parametric instability (excitation of upper-hybrid plasma turbulence) in long-term quasicontinuous heating of ionospheric plasma. The possible mechanisms of collisionless dissipation of plasma turbulence energy are discussed to explain the observed dependence of the plasma wave damping rate on the temperal stage of development and intensity of plasma turbulence.

Radiophysical Research Institute, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 41, No. 3, pp. 313–347, March, 1998.