Algebra and Logic

, Volume 36, Issue 6, pp 389-412

Prime alternative superalgebras of arbitrary characteristic

  • I. P. Shestakov

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Simple nonassociative alternative superalgebras are classified. Any such superalgebra either is trivial (i.e., has zero odd part) or has characteristic 2 or 3 and is isomorphic over its center to a superalgebra of one of the following five types: in characteristic 3, these are two superalgebras of dimensions 3 and 6 and a “twisted superalgebra of vector type,” which either is infinite-dimensional or has dimension 2·3n; in characteristic 2, those are either a Cayley-Dixon algebra with a grading induced by the Cayley-Dixon process or a “double Cayley-Dixon algebra.” Under certain constraints on the structure of even parts, we also give a description of prime nonassociative alternative nontrivial superalgebras in terms of central orders of simple superalgebras. The simple superalgebras of dimensions 3 and 6 are then used to construct simple Jordan superalgebras of characteristic 3 and of dimensions 12 and 21, respectively.