Metallurgical and Materials Transactions A

, Volume 25, Issue 4, pp 789–798

Heat treatment of investment cast PH 13-8 Mo stainless steel: Part I. Mechanical properties and microstructure

  • P. W. Hochanadel
  • G. R. Edwards
  • C. V. Robino
  • M. J. Cieslak
Mechanical Behaviour

DOI: 10.1007/BF02665455

Cite this article as:
Hochanadel, P.W., Edwards, G.R., Robino, C.V. et al. MMTA (1994) 25: 789. doi:10.1007/BF02665455

Abstract

The microstructure of investment cast PH 13-8 Mo stainless steel heat-treated to various conditions was studied using light and electron microscopy, electron probe microanalysis, and Mössbauer spectroscopy. The mechanical properties were investigated by using uniaxial tensile testing, hardness testing, and Charpy impact testing. TheΒ-NiAl strengthening precipitates, though detectable by electron diffraction, were difficult to resolve by transmission electron microscopy (TEM) in specimens aged at low temperatures (566 °C and below). A high dislocation density was observed in the lath martensitic structure. The higher strength and lower ductility observed at low aging temperatures was attributed to both the high dislocation density and the precipitation ofΒ-NiAl. When samples were aged at high temperatures (> 566 °C), a lower dislocation density and a reverted austenite fraction on the order of 15 pct were observed. SphericalΒ-NiAl precipitates were observed in the overaged condition. The decrease in strength and corresponding increase in ductility observed in samples aged at temperatures above 566 °C were attributed to the reverted austenite and recovery. Mechanical properties were improved when the homogenizing temperature and time were increased. Electron probe microanalysis quantified the increased homogeneity realized by increasing homogenizing temperature and time. Elimination of the refrigeration step, which normally follows the solution treatment, did not degrade the mechanical properties. Mössbauer spectroscopy showed only minor decreases in the fraction of retained austenite when refrigeration followed the solution treatment.

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1994

Authors and Affiliations

  • P. W. Hochanadel
    • 1
  • G. R. Edwards
    • 1
  • C. V. Robino
    • 2
  • M. J. Cieslak
    • 2
  1. 1.Center for Welding and Joining Research, Department of Metallurgical and Materials EngineeringColorado School of MinesGolden
  2. 2.Physical and Joining Metallurgy DepartmentSandia National LaboratoriesAlbuquerque