Skip to main content
Log in

Thermodynamic assessment of the copper-oxygen system

  • Published:
Journal of Phase Equilibria

Abstract

The Cu-O system shows complete miscibility between the metallic liquid and the oxide liquid above ∼1623 K and a miscibility gap below that temperature. Because of the practical importance of the system, a wealth of experimental data exists, both on the phase diagram and on the thermodynamic properties. These data have been reviewed, and a consistent set of thermodynamic model parameters has been optimized. An ionic two-sublattice model was used to describe the liquid phase and was found to represent accurately the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Cited References

  1. F.E. Neumann, “Investigation of Specific Heat of Minerals,”Ann. Phys. Chem. (Poggendorff), 23,1–39 (1831) in German.

    ADS  Google Scholar 

  2. V. Regnault, “On the Specific Heat of Elements and Compounds,”Ann. Chim. Phys., Ser.3,1,129–207 (1841) in French.

    Google Scholar 

  3. H. Kopp, “Investigations of the Specific Heat of Solid Bodies,”Philos. Trans. R. Soc. (London), 155,71–202 (1865).

    Article  ADS  Google Scholar 

  4. J. Thomsen,Thermochemische Untersuchungen, Vol. I, III, Barth, Leipzig (1883); (cited from [85Cha]).

    Google Scholar 

  5. E. Heyn,Z. Anorg. Chem., 39, 1–23 (1904); (cited from [12Sla]).

    Article  Google Scholar 

  6. P. Dejean, “On the Solidification of Copper,”Rev. Métall., 3,149–158(1906)in French.

    Article  Google Scholar 

  7. H.W. Foote and E.K. Smith, “On the Dissociation Pressures of Certain Oxides of Copper, Cobalt, Nickel and Antimony,”J. Am. Chem. Soc., 30, 1344–1350(1908).

    Article  Google Scholar 

  8. A.J. Allmand, “The Electromotive Behaviour of Cuprous Oxide and Cupric Hydroxide in Alkaline Electrolytes,”J. Chem. Soc. London, 95, 2151–2161 (1909).

    Article  Google Scholar 

  9. A. J. Allmand, “Affinity Relations of Cupric Oxide and of Cupric Hydroxide,”J. Chem. Soc. London, 97, 603–621(1910).

    Article  Google Scholar 

  10. Magnus, Habilationsschrift, Tübingen (1910) in German; (cited from[31Ran]).

  11. A.J. Allmand, “The Element Cu ∥ Cu2O Alkali ∥ H2 at 0°,“J. Chem. Soc. London, 99, 840–845 (1911).

    Article  Google Scholar 

  12. A.S. Russell, “Measurements of the Specific Heat at Low Temperatures,”Physikal. Zeitschr, 13, 59–64 (1912).

    Google Scholar 

  13. R.E. Slade and F.D. Farrow, “An Investigation of the Dissociation Pressures and Melting Points of the System Copper-Cuprous Oxide,”Proc.R.Soc.(London)A, 87, 524–534 (1912).

    Article  ADS  Google Scholar 

  14. W.D. Treadwell, “On the Oxygen Pressure of Some Oxides and the Carbon-Oxygen Chain at Higher Temperature,”Z. Elektrochemie, 22(21/22), 414–421 (1916)in German.

    Google Scholar 

  15. F.H. Smyth and H.S. Roberts, “The System Cupric Oxide, Cuprous Oxide, Oxygen,”J. Am. Chem. Soc., 42, 2582–2607 (1920).

    Article  Google Scholar 

  16. H.S. Roberts and F.H. Smyth, “The System Copper: Cupric Oxide: Oxygen,”J. Am. Chem. Soc., 43, 1061–1079(1921).

    Article  Google Scholar 

  17. K. Clusius and P. Harteck, “On the Specific Heat of Some Solids at Low Temperatures,”Z. Phys. Chem., 134, 243–263 (1928) in German.

    Google Scholar 

  18. CG. Maier, “Oxide Cells of Cadmium, Copper, Tin and Lead,”J.Am. Chem.Soc, 51,194–207(1929).

    Article  Google Scholar 

  19. R.W. Millar, “The Heat Capacities at Low Temperatures of ‘Ferrous Oxide’, Magnetite and Cuprous and Cupric Oxides,”J. Am. Chem. Soc., 51, 215–222(1929).

    Article  Google Scholar 

  20. R. Vogel and W. Pocher, “On the System Copper-Oxygen,”Z. Metallkd., 21(10), 333–337 (1929) in German; 27(11), 368–371 (1929) in German.

    Google Scholar 

  21. M. Randall, R.F. Nielsen, and G.H. West, “Free Energy of Some Copper Compounds,”INd.Eng.Chem., 23 (4), 388–400(1931).

    Article  Google Scholar 

  22. H. von Wartenberg and H. Werth, “The Heat of Formation of Copper Oxide,”Z. Elektrochemie Angew. Phys. Chem., 38(7), 401–402 (1932) in German.

    Google Scholar 

  23. N.P. Allen and T. Hewitt, “The Equilibrium of the Reaction between Steam and Molten Copper,”J.Inst.Met., 51, 257–275 (1933).

    Google Scholar 

  24. L. Wöhler and N. Jochum, “Thermochemical Measurements of the Oxides of Copper, Rhodium, Palladium, and Iridium,”Z. Phys. Chem.,167(3),169–179(1933)inGerman.

    Google Scholar 

  25. W. Biltz, G. Rohlffs, and H.U. von Vogel, “Construction and Use of a High Temperature Calorimeter with Closed Reaction Zone,”Z. Anorg.Allg.Chem.,220(2), 113–141 (1934) in German.

    Article  Google Scholar 

  26. F.N. Rhines, and C.H. Mathewson, “Solubility of Oxygen in Solid Copper,”Trans. AIME, 111, 337–353 (1934).

    Google Scholar 

  27. A. Phillips and E.N. Skinner, “Solubility of Oxygen in High-Purity Copper,”Trans. AIME, 143, 301–308 (1941).

    Google Scholar 

  28. W. Feitknecht, “On the Solubility Product of the Copper Oxides and Hydroxides and on the Solubility of Copper Hydroxide in Soda Lye,”Helv. Chim. acta, 27, 771–775 (1944) in German.

    Article  Google Scholar 

  29. R. Näsänen and V. Tamminen, “The Equilibria of Cupric Hydroxysalts in Mixed Aqueous Solutions of Cupric and Alkali Salts at 25°,”J.Am. Chem. Soc., 71, 1994–1998(1949).

    Article  Google Scholar 

  30. D.J. Girardi and CA. Siebert, “Equilibrium in the Reaction of Carbon Dioxide with Liquid Copper from 1090 to 1300 °C,”Trans. AIME, 188(9), 1168–1170(1950).

    Google Scholar 

  31. J.-H. Hu and H.L. Johnston, “Low Temperature Heat Capacities of Inorganic Solids. IX. Heat Capacity and Thermodynamic Properties of Cuprous Oxide from 14 to 300°K,”J. Am. Chem. Soc., 73, 4550–4551(1951).

    Article  Google Scholar 

  32. P. Chiche, “Contribution to the Determination of the Standard Thermodynamic Properties of the Copper Oxides,”Ann. Chim., Ser. 12, 7, 361–398 (1952) in French; P. Chiche and M. Dode, “On the Standard Thermodynamic Properties of the Copper Oxides,”C.R. Acad. Sci.,232,618-620 (1951) in French.

    Google Scholar 

  33. J.-H. Hu and H.L. Johnston, “Low Temperature Heat Capacities of Inorganic Solids. XVI. Heat Capacity of Cupric Oxide from 15 to 300 °K,”J. Am. Chem. Soc., 75, 2471–2473 (1953).

    Article  Google Scholar 

  34. P. Assayag, “Contribution to the Study of the Thermodynamic Properties of Copper-Platinum Alloys,”Ann. Chim., Ser. 12, 10, 637–665 (1955) in French.

    Google Scholar 

  35. K. Sano and H. Sakao, “Physico-Chemical Investigations on CopperSmelting,”Mem.Fac.Eng.,Nagoya Univ., 8, 137–163 (1956).

    Google Scholar 

  36. K. Kiukkola and C. Wagner, “Measurements on Galvanic Cells Involving Solid Electrolytes,”J. Electrochem. Soc., 104(6), 379–387 (1957).

    Article  Google Scholar 

  37. D.G. Hill, B. Porter, and A.S. Gillespie, Jr., “Electrochemical Measurement of Oxide Formation,”J. Electrochem. Soc., 105(7), 408–412(1958).

    Article  Google Scholar 

  38. H. Peters and G. Mann, “Electrochemical Investigation of the Reduction Equilibriaof Metal Oxides,”Naturwissenschaften, 45(9), 209 (1958) in German.

    Article  ADS  Google Scholar 

  39. P.B. Barton, Jr. and P.M. Bethke, “Thermodynamic Properties of Some Synthetic Zinc and Copper Minerals,”Am. J. Sci., 258-A, 21–34 (1960).

    Google Scholar 

  40. L.V. Gregor, “The Heat Capacity of Cuprous Oxide from 2.8 to 21°K,”J.Phys.Chem., 66, 1645–1647(1962).

    Article  Google Scholar 

  41. M. O’Keeffe and F.S. Stone, ”The Magnetic Susceptibility of Cupric Oxide,”J. Phys. Chem. Solids, 23, 261–266 (1962).

    Article  ADS  Google Scholar 

  42. A.M.M. Gadalla, W.F. Ford, and J. White, “Equilibrium Relationships in the System CuO-Cu2O-SiO2,”Trans. Br. Cer. Soc., 62, 45–66(1963).

    Google Scholar 

  43. Y. Matsushita and K. Goto, “The Application of Oxygen Concentration Cells with the Solid Electrolyte, ZrO2CaO to Basic Research Works in Iron and Steel Making,”Tetsu-to-Hagané Overseas,4(2), 128–138. (1964); Y. Matsushita and K Goto, “The Application of Oxygen Concentration Cells with the Solid Electrolyte ZrO2CaO to Thermodynamic Research,”Thermodynamics, Vol. I, Proc. Symposium July 22–27, 1965, Vienna, Austria, IAEA, Vienna, 111–129 (1966).

  44. N.G. Schmahl and F. Müller, “Investigations into Equilibria in the System Copper-Iron-Oxygen,”Arch. Eisenhiittenwes., 35(6), 527–532 (1964) in German.

    Google Scholar 

  45. G.R. Belton and E.S. Tankins, “The Thermodynamic Behavior of Oxygen in Liquid Binary-Metallic Solvents—A Simple Solution Model”Trans.Metall.Soc.AlME, 233(10), 1892–1898(1965).

    Google Scholar 

  46. W Pluschkell and H.-J. Engell, “On an Electro-Chemical Method for the Determination of the Oxygen Content of Copper Melts,”Z. Metallkd., 56(7), 450–452 (1965) in German.

    Google Scholar 

  47. P. Schindler, H. Althaus, F. Hofer, and W Minder, “Solubility Products of Metal Oxides and Hydroxides. Part 10. Solubility Product of Zinc Oxide, Copper Hydroxide, and Copper Oxide; Dependence of Particle Size and Molar Surface. A Contribution to Thermodynamics of Solid-Liquid Interfaces,”Helv. Chim. acta, 48(5), 1204–1215 (1965) in German.

    Article  Google Scholar 

  48. B.C.H. Steele and C.B. Alcock, “Factors Influencing the Performance of Solid Oxide Electrolytes in High-Temperature Thermodynamic Measurements,”Trans. Metall. Soc. AIME, 233(7), 1359–1367(1965).

    Google Scholar 

  49. E.S. Tankins, J.F. Erthal, and M.K. Thomas, Jr., “The Thermodynamic Properties of Dilute Solutions of Oxygen in the Liquid Binary Cu-Ni Alloys,”HJ. Electrochem. Soc., 112(4), 446–450 (1965).

    Article  Google Scholar 

  50. Yu. D. Tret’ yakov and H. Schmalzried, “On the Thermodynamics of Spinel Phases (Chromite, Ferrite, Aluminate),”Ber. Bunsenges. Phys. Chem., 69(5), 396–402 (1965) in German.

    Article  Google Scholar 

  51. W.A. Fischerand W. Ackermann, “Direct Electrochemical Determination of the Oxygen Content of Metal Melts. I. Investigations on Iron, Cobalt, Nickel, and Copper Melts,”Arch. Eisenhüttenwes., 37(1), 43–47 (1966) in German.

    Article  Google Scholar 

  52. J. Osterwald, “Emf Measurements of Liquid Copper in Equilibrium with Solid or Liquid Copper(I) Oxide,”Z. Phys. Chem. Neue Folge, 49(3/4), 138–146(1966) in German.

    Article  Google Scholar 

  53. H. Rickert and H. Wagner, “Electrochemical Measurement of the Oxygen Activity in Liquid Copper,”Electrochim. acta, 11, 83–91 (1966) in German; H. Rickert, H. Wagner, and R. Steiner, “Electrochemical Measurement of the Oxygen Activity and Diffusion in Metals with Zirconium Dioxide as Solid Electrolyte,”Chem. Ing. Tech., 38(6), 618–622 (1966) in German.

    Article  Google Scholar 

  54. CM. Sellars and F. Maak, “The Thermodynamic Properties of Solid Au-Ni Alloys at 775 to 935 °C,”Trans. Metall. Soc. AIME, 236(4), 457–464 (1966).

    Google Scholar 

  55. T.C. Wilder, “Direct Measurement of the Oxygen Content in Liquid Copper; the Activity of Oxygen in Dilute Liquid Cu-0 Alloys,”Trans. Metall. Soc. AIME, 236(1), 1035–1040 (1966).

    Google Scholar 

  56. L.R. Bidwell, “Free Energy of Formation of Cupric Oxide,”J. Electrochem. Soc., 114(1), 30–31 (1967).

    Article  Google Scholar 

  57. CM. Diaz and F.D. Richardson, “Electrochemical Measurement of Oxygen in Molten Copper,”Trans. Inst. Min. Metall., 76, C196-C203(1967).

    Google Scholar 

  58. M.M.A. El-Naggar, G.B. Horsley, and N.A.D. Parlee, “Application of a Solid Electrolytic Cell for Measuring Equilibrium Po2over Liquid Metal-Oxygen Solutions,”Trans. Metall. Soc. AIME, 239(12), 1994–1996(1967).

    Google Scholar 

  59. K. Hochgeschwender and T.R. Ingraham, “Use of Thermal Conductivity Gas Analysis for Thermodynamic Measurements on the Dissociation of CuO, Mn2O3 and MnO2,”Can. Metall. Q., 6(1), 71–84 (1967); K. Hochgeschwender and T.R. Ingraham, “Thermodynamic Investigation of the Dissociation of Some Metal Oxides by Continuous GasAnalysis,” Erzmetall, 21(2), 58–63 (1968) in German.

    Article  Google Scholar 

  60. A.D. Mah, L.B. Pankratz, W.W. Weiler, and E.G. King, “Thermodynamic Data for Cuprous and Cupric Oxides,” U.S. Bureau of Mines, Rep. Investigations 7026 (1967).

  61. G. Reimann, Dr.-Ing. Dissertation, TU. Berlin (1967) in German; (cited from [69Ost ]).

  62. F.E. Rizzo, L.R. Bidwell, and D.F. Frank, “The Standard Free Energy of Formation of Cuprous Oxide,”Trans. Metall. Soc. AIME, 239(4),593–596(1967).

    Google Scholar 

  63. W. Stichel, Dr.-Ing. Dissertation, T.U. Berlin (1967) in German; (cited from [69Ost ]).

  64. E.S. Tankins and W. Beck, “On the Thermodynamics of Dilute Solutions of Oxygen in Liquid Copper-Cobalt Alloys,”Z. Metallkd., 58(10), 721–724 (1967) in German; E.S. Tankins, “Activity of Oxygen in Cu-Au, Cu-Ag, Cu-Pt, Cu-Ni, Cu-Co and Cu-Fe Alloys,”Can. Metall. Q., 9(1), 353–357 (1970); E.S. Tankins, “Thermodynamic Properties of Dissolved Oxygen in Liquid ton-Copper Alloys,”Can. Metall. Q., 10(l),21-23(1911).

    Google Scholar 

  65. G.G. Charette and S.N. Flengas, “Thermodynamic Properties of the Oxides of Fe, Ni, Pb, Cu, and Mn, by EMF Measurements,”J. Electrochem. Soc., 115(8), 796–804 (1968).

    Article  Google Scholar 

  66. J. Gerlach, J. Osterwald, and W. Stichel, “Coulometric Determination of the Miscibility Gap between Liquid Copper and Copper(I) Oxide,”Z. Metallkd., 59(1), 576–579 (1968) in German.

    Google Scholar 

  67. K. Kodera, I. Kusunoki, and S. Shimizu, “Dissociation Pressures of Various Metallic Oxides,”Bull. Chem. Soc. Jpn., 41 (5), 1039–1045(1968).

    Article  Google Scholar 

  68. U. Kuxmann and K. Kurre, “The Miscibility Gap in the System Copper-Oxygen and the Influence on it by the Oxides CaO, SiO2, A12O3, MgOAl2O3, andZrO2Erzmetall, 21(5), 199–209 (1968) in German.

    Google Scholar 

  69. J. Osterwald, “On the Phase Diagram of the System Copper-Oxygen in the Temperature Range of Liquid Phases,”Z. Metallkd., 59(7), 573–576 (1968) in German.

    Google Scholar 

  70. M. A. Rigdon and R.E. Grace, “Near-Equilibrium Kinetics of the Dissociation of Cupric Oxide,”Trans. Metall. Soc. AIME, 242(5), 822–825(1968).

    Google Scholar 

  71. U. Block and H.-P. Stüwe, “The Solubility of Oxygen in Binary and Ternary Alloys of Tin, Copper and Silver at 1200 °C,”Z. Metallkd., 60(9), 709–112(1969)in German.

    Google Scholar 

  72. R.J. Fruehan and F.D. Richardson, “The Activities of Oxygen in Liquid Copper and Its Alloys with Silver and Tin,”Trans. Metall. Soc. AIME, 245(8), 1721–1726(1969).

    Google Scholar 

  73. E.K. Kazenas, D.M. Chizhikov, and Yu. V. Tsvetkov, “The Dissociation Pressures of Copper Oxides,”Akad. Nauk SSSR, Izv. Met., (2), 60–62 (1969) in Russian; TR:Russ. Metall, (2), 46–48 (1969).

  74. J. Moriyama, N. Sato, H. Asao, and Z. Kozuka, “Thermodynamic Study on the Systems of Metals and Their Oxides by EMF Measurements Using Solid Electrolyte,”Mem. Fac Eng., Kyoto Univ., 31, 253–261(1969).

    Google Scholar 

  75. L. Nuñmez, G. Pilcher, and H.A. Skinner, “Hot-Zone Reaction Calorimetry. The Enthalpies of Formation of Copper Oxides,”J. Chem. Thermodyn., 1, 31–43 (1969).

    Article  Google Scholar 

  76. J. Osterwald, G. Reimann, and W. Stichel, “On the Oxygen Activity inLiquid Copper,”Z.Phys.Chem.Neue Folge, 66(1–3), 1–7(1969) in German.

    Article  Google Scholar 

  77. R.L. Pastorek and R.A. Rapp, “The Solubility and Diffusivity of Oxygen in Solid Copper from Electrochemical Measurements,”Trans. Metall. Soc. AIME, 245(8), 1711–1720 (1969).

    Google Scholar 

  78. G.B. Barbi, “Thermodynamic Stability of Copper Oxides,”Gazz. Chim. Ital., 100, 64–74 (1970) in Italian.

    Google Scholar 

  79. W.G. Bugden and J.N. Pratt, “Solid Electrolyte Galvanic Cell Studies: Free Energies of Formation of CoO and CO3O4,”Trans. Inst. Min.Metall., 79, C221-C225 (1970).

    Google Scholar 

  80. M.M.A. El-Naggar and N.A.D. Parlee, “The Free Energy of Solution of Oxygen in Liquid Copper by a Solid Electrolytic Cell Technique,”Metall. Trans., 1(10), 2975–2977 (1970).

    Google Scholar 

  81. W.A. Fischer and G. Pateisky, “The Suitability of Solid Metal/Metallic Oxide Mixtures as Reference Potentials in Oxygen Measuring Cells,”Arch. Eisenhüttenwes., 41(7), 661–673 (1970) in German.

    Article  Google Scholar 

  82. C.R. Nanda and G.H. Geiger, “On the Thermodynamics of Oxygen in Molten Copper, Cu-Sn, and Cu-Ag Alloys,”Metall. Trans., 1(5), 1235–1243 (1970).

    Article  Google Scholar 

  83. I. Tsukahara, “Determination of Oxygen in Molten Copper and Copper-Tin Alloy by the EMF Method,”J. Jpn. Inst. Met.,34(7), 679–684 (1970) in Japanese.

    Article  Google Scholar 

  84. W.A. Fischer and D. Janke, “The Free Enthalpies of Reaction for the Dissolution of Oxygen in Melts of Copper-Nickel, Copper-Cobalt, and Copper-Iron Alloy s,”Z. Metallkd., 62(10), 747–751 (1971) in German.

    Google Scholar 

  85. K.T. Jacob and J.H.E. Jeffes, “Thermodynamics of Oxygen in Liquid Copper, Lead and Copper-Lead Alloys,”Trans. Inst. Min.Metall., 80, C32-C41 (1971).

    Google Scholar 

  86. T. Oishi, Z. Kozuka, and J. Moriyama, “Thermodynamic Properties of Oxygen in Molten Copper and the Effects of Tin and Nickel on These Properties,”Trans. Jpn. Inst. Met., 12, 410–416 (1971); Z. Kozuka, K. Suzuki, T. Oishi, and J. Moriyama, “Estimation of Oxygen Contents in Molten Copper by Electrochemical Methods,”J. Jpn. Inst.Met.,32(11), 1132-1137(1968) in Japanese.

    Article  Google Scholar 

  87. A.A. Slobodyanyuk, Yu. D. Tret’yakov, and A.F. Bessonov, “Investigation of the Thermodynamic Stabilities of Copper Silicates and Aluminates by an Electromotive Force Method Using a Solid Electrolyte,”Russ.J.Phys.Chem., 45(7), 1069–1070(1971).

    Google Scholar 

  88. W.T. Thompson and P. Tarassoff, “Determination of Oxygen in CopperwithanemfProbe,”Can.metall.Q., 10(4), 315–321(1971).

    Article  Google Scholar 

  89. F. Bouillon and J. Országh, “Solubility of Oxygen in Single Crystal Copper,”J. Phys. Chem. Solids, 33, 1533–1539 (1972) in French.

    Article  ADS  Google Scholar 

  90. E.S. Tankins and N.A. Gokcen, “Thermodynamic Properties of Dilute Solutions of Oxygen in Liquid Ag-Cu, Ag-Sn, and Cu-Sn Systems,”High Temp. Sci., 4, 393–404 (1972).

    Google Scholar 

  91. A.K. Biswas and H.P. Seow, “The Thermodynamic Properties of Oxygen in Liquid Copper-Iron Alloys,”Can. Metall. Q., 12(3), 257–264(1973).

    Article  Google Scholar 

  92. A.D. Kulkarni, “The Thermodynamic Studies of Liquid Copper Alloys by Electromotive Force Method: Part I. The Cu-O, Cu-Fe-O, and Cu-Fe Systems,“Metall. Trans., 4(l), 1713–1721 (1973).

    Article  Google Scholar 

  93. K.-E. Öberg, L.M. Friedman, W.M. Boorstein, and R.A. Rapp, “The Diffusivity and Solubility of Oxygen in Liquid Copper and Liquid Silver fromElectrochemicalMeasurements,”Metall Trans., 4(l), 61–67(1973).

    Article  Google Scholar 

  94. A. Hendry and H.B. Bell, “Thermodynamics of Liquid Copper-Silicon-Oxygen Alloys,”Trans. Inst. Min. Metall., 83, C10-C13 (1974).

    Google Scholar 

  95. G.K. Sigworth and J.F. Elliott, “The Thermodynamics of Dilute Liquid Copper Alloys,”Cal. Metall. Q., 13(3), 455–461 (1974).

    Article  Google Scholar 

  96. L.-I. Staffansson, L. Bentell, and I. Svensson, “The Influence of Selenium on the Oxygen Activity in Liquid Copper,”Scand. J. Metall., 3, 153–157 (1974).

    Google Scholar 

  97. K.T. Jacob and C.B. Alcock, “Thermodynamics of CuAlO2 and CuAl2O4 and Phase Equilibria in the System Cu2O-CuO-Al2O3,”J. Am. Ceram. Soc., 58(5-6), 192–195 (1975).

    Article  Google Scholar 

  98. D. Janke and W.A. Fischer, “Thermodynamic Relations for the Solution Behaviour of Oxygen in Copper Base Melts,”Metall (Berlin), 29(12), 1189–1193 (1975) in German.

    Google Scholar 

  99. Z. Moser, K. Fitzner, and W. Zakulski, “Free Energies of Formation of NiO and Cu2O by EMF Measurements Involving Solid Electrolytes,”Bull.Acad.Pol.Sci.Ser. Techn., 25(3), 243–248 (1975).

    Google Scholar 

  100. Z. Moser and K. Fitzner, “Use of Solid Electrolytes to Analyze the Thermodynamic Properties in the System Cu-O,”Rudy Met. Niezefaz., 20(11), 510–513(1975)inPolish.

    Google Scholar 

  101. N.H. Santander and O. Kubaschewski, “The Thermodynamics of the Copper-Oxygen System,”High Temp.—High Press., 7, 573–582(1975).

    Google Scholar 

  102. Z. Moser and K. Fitzner, “EMF Measurements Involving Solid Electrolytes in the Cu-O System,”Bull. Acad. Pol. Sci., Ser Techn., 24(3), 215–220 (1976).

    Google Scholar 

  103. T. Wada, K. Fueki, and T. Mukaibo, “Determination of the Solubility of Oxygen in Copper by the Coulometric Method,”Bull. Chem. Soc.Jpn., 49(11), 3317–3318(1976).

    Article  Google Scholar 

  104. V.M. Horrigan, “The Solubility of Oxygen in Solid Copper,”Metall.Trans.A, 8(5),785–787(l917).

    Article  Google Scholar 

  105. S.H. Sadat-Darbandi, “Determination of Equilibrium and Transport Properties of the Liquid Phases of the System Copper-Oxygen,” Dr.-Ing. Dissertation, T.U. Berlin (1977) in German.

  106. K. Fitzner, “Solubility and Activity of Oxygen in Liquid Copper-Silver Alloys,rdZ. Metallkd., 69(12), 751–754 (1978).

    Google Scholar 

  107. D. Janke, “Electrolytic Deoxidation of Cobalt, Nickel, Copper, andSilverMelts,”Z. Metallkd., 69(5), 302–307 (1978)in German.

    Google Scholar 

  108. M. O’Keeffe and J.-O. Bovin, “The Crystal Structure of Paramelaconite, Cu4O3,”Am. Mineralogist, 63, 180–185 (1978).

    Google Scholar 

  109. H. Eric and M. Timucin, “Equilibrium Relations in the System Nickel Oxide-Copper Oxide,”Metall. Trans. B, 10, 561–563 (1979).

    Article  Google Scholar 

  110. K. Fitzner and Z. Moser, “Activity of Oxygen in Dilute Liquid Cu-O Alloys,”Met. Technol., 6, 273–275 (1979).

    Article  Google Scholar 

  111. P. Hytönen and P. Taskinen, “Activity of Oxygen in Dilute Cu-Ni and Cu-Sb Alloys,”Scand. J. Metall., 8, 123–127 (1979).

    Google Scholar 

  112. N. Kemori, I. Katayama, and Z. Kozuka, “Measurements of Standard Molar Gibbs Energies of Formation of NiO, Cu2O, and CoO from Solid and Liquid Metals and Oxygen Gas by an e.m.f. Method at High Temperatures,”J. Chem. Thermodyn., 11, 215–228 (1979); N. Kemori, I. Katayama and Z. Kozuka, “Measurements of Standard Molar Free Energies of Formation of NiO, Cu2O, and CoO by EMF Method at High Temperatures,”J. Jpn. Inst. Met., 47(8), 803–808 (1977) in Japanese.

    Article  Google Scholar 

  113. F. Puchi, “Contribution to the Measurement of Equilibrium Partial Pressures of Oxygen in Copper Melts,” Dr.-Ing. Dissertation, T.U. Berlin (1979) in German; F. Puchi and M.G. Frohberg, “The Influence of Bismuth on the Oxygen Activity in Liquid Copper,”Metall (Berlin),33(5), 449–450(1979).

  114. VS. Sudavtsova, N.I. Kuz’menko, G.I. Batalin, V.A. Anoshin, and V.M. Ilyushenko, “Activity of Oxygen in Molten Copper,”Ukr. Khim. Zh., 45(4), 306–310 (1979) in Russian; TR:Soviet Progress in Chemistry,45(4), 18–22(1979).

    Google Scholar 

  115. P. Taskinen and H. Hiltunen, “Thermodynamics of Oxygen in Dilute Cu-Bi Alloys at 1100–1200 °C,”Scand. J. Metall., 8, 39–42 (1979).

    Google Scholar 

  116. N. Kemori, I. Katayama, and Z. Kozuka, “Thermodynamic Study of Oxygen in Liquid Copper,”Trans. Jpn. Inst. Met., 21, 275–284(1980).

    Article  Google Scholar 

  117. E. Sugimoto, S. Kuwata, and Z. Kozuka, “Measurements of Standard Free Energies of Formation of Various Oxides by E.M.F. Method with Solid Oxide Electrolyte at Low Temperatures,”J. Jpn. Inst. Met., 44(6), 644–651 (1980) in Japanese.

    Article  Google Scholar 

  118. E. Albert, R. Kirchheim, and H. Dietz, “Diffusivity of Oxygen in Copper,”Scr.Metall., 15(6), 673–677(1981).

    Article  Google Scholar 

  119. Y. Kayahara, K. Ono, T. Oishi, and J. Moriyama, “Thermodynamic Study of the Liquid Cu-O System,”Trans. Jpn. Inst. Met., 22(7), 493–500 (1981); Y. Kayahara, K. Ono, T. Oishi, and J. Moriyama, “Thermodynamic Study of the Liquid Cu-O System,”J. Jpn. Inst. Met.,42(5), 527–533 (1978) in Japanese.

    Article  Google Scholar 

  120. S. Otsuka and Z. Kozuka, “Activities of Oxygen in Liquid Copper and Silver from Electrochemical Measurements,”Metall. Trans. B, 72, 501–507(1981).

    Article  Google Scholar 

  121. P. Taskinen, “Liquidus Equilibria and Solution Thermodynamics in Copper-Rich Copper-Nickel-Oxygen Alloys,”Acta Polytechnica Scand., Chemistry Including Metallurgy Series, No. 145, Helsinki (1981).

  122. P. Taskinen, “The Standard Gibbs Energy of Formation of Cu2O(s)at 1066–1220 °C,”Scand J. Metall., 70,189–191 (1981).

    Google Scholar 

  123. M.W. Chase, Jr., J.L. Curnutt, J.R. Downey, Jr., R. A. McDonald, A.N. Syverud, and E.A. Valenzuela, “ JANAF Thermochemical Tables, 1982 Supplement,”J. Phys. Chem. Ref. Data, 11, 695–940 (1982).

    Article  ADS  Google Scholar 

  124. S. Anik, “On the Solution Behaviour of Oxygen in Binary Alloys with Particular Consideration of Experimental Results in the System Copper-Oxygen-Bismuth at 1200 °C, Dr.-Ing. Dissertation, T.U. Berlin (1983) in German; S. Anik. M.G. Frohberg, and M.L. Kapoor, “Experiments and Theoretical Considerations on the Solution of Oxygen inBinary Metal Alloys,”Ber.Bunsenges. Phys. Chem.,87,1201–1204 (1983); S. Anik and M.G. Frohberg, “Investigation of the Thermodynamics of Oxygen and the Determination of Phase Boundaries in the System Copper-Oxygen-Bismuth at 1200 °C,” Z.Metallkd., 74(8), 530–534 (1983) in German; S. Anik and M.G. Frohberg, “Thermodynamics and Solubility of Oxygen in Liquid Copper-Lead Alloys at 1200 °C from E.M.F. Measurements,”Ber. Bunsenges. Phys. Chem.,88, 707–710 (1984); S. Anik and M.G. Frohberg, “Investigations of the Thermodynamics of Oxygen and the Determination of the Miscibility Gap in the System Copper-Oxygen-Lead at 1200 °C,” Z.Metallkd., 75(8), 586–589 (1984); M.G. Frohberg and S. Anik, “Electrochemical Investigation of the Thermodynamics of Oxygen in Copper Base Melts,”Metall (Berlin), 39(2), 135–139 (1985) in German; M.G. Frohberg and S. Anik, “Experimental Results on the Solution Behaviour of Oxygen in the Systems Cu-O-Bi and Cu-O-Pb,”Neue Hütte, 31(9), 344–347 (1986) in German; S. Anik and M.G. Frohberg, “Thermodynamic Behaviour of Oxygen in Molten Metallic Alloys,”Thermochemistry of Alloys, H. Brodowsky and H.-J. Schaller, Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 419-428(1989).

  125. M.L. Narula, V.B. Tare, and W.L. Worrell, “Diffusivity and Solubility of Oxygen in Solid Copper Using Potentiostatic and Potentiometric Techniques,”Metall. Trans. B, 14, 673–677 (1983).

    Article  Google Scholar 

  126. R. Schmid, “A Thermodynamic Analysis of the Cu-O System with an Associated Solution Model,”Metall. Trans. B, 14, 473–481 (1983).

    Article  Google Scholar 

  127. B. Hammer, D. Lenz, P. Reimers, T. Dudzus, and B.F. Schmitt, “The Solubility of Oxygen in Pure Copper,”Metall (Berlin), 38(1), 41–45 (1984)in German.

    Google Scholar 

  128. B. Jansson, “Evaluation of Parameters in Thermochemical Models Using Different Types of Experimental Data Simultaneously,” TRITA-MAC 234, Royal Institute of Technology, Stockholm, Sweden (1984).

    Google Scholar 

  129. J.P. Neumann, T. Zhong, and Y.A. Chang, “The Cu-O (Copper-Oxygen) System,”Bull. AlloyPhaseDiagrams, 5(2), 136–140 (1984).

    Google Scholar 

  130. P. Taskinen, “Thermodynamics of Liquid Copper-Oxygen Alloys at 1065-1450”°C,” Scand. J. Metall., 13, 75–82 (1984).

    Google Scholar 

  131. M.W. Chase,Jr., C. A. Davies, J.R. Downey,Jr. , D.J. Frurip, R.A. McDonald, and A.N. Syverud, “JANAF Thermochemical Tables, 3rd ed.,”J. Phys. Chem. Ref. Data, 74(Suppl. 1), 983–987 (1985).

    Google Scholar 

  132. M. Hillert, B. Jansson, B. Sundman, and J. Ågren, “A Two-Sublattice Model for Molten Solutions with Different Tendency for Ionization,”Metall. Trans. A, 16(2), 261–266 (1985).

    Article  Google Scholar 

  133. C. Mallika, O.M. Sreedharan, and M.S. Chandrasekharaiah, “Determination of the Standard Gibbs Energy of Formation of Rh2O3(s) and IrO2(s) from Solid Oxide Electrolyte Electromotive Force Measurements,”J.Less-CommonMet., 107, 203–212 (1985).

    Article  Google Scholar 

  134. B. Sundman, B. Jansson, and J.-O. Andersson, “The Thermo-Calc DatabankSystem,”Calphad, 9(2), 153–190(1985).

    Article  Google Scholar 

  135. R.D. Holmes, H. St. C. O’Neill, and R.J. Arculus, “Standard Gibbs Free Energy of Formation for Cu2O, NiO, CoO and FexO: High Resolution Electrochemical Measurements Using Zirconia Solid Electrolytes from 900–1400 K,”Geochim. Cosmochim. Acta, 50, 2439–2452(1986).

    Article  ADS  Google Scholar 

  136. J.P. Neumann and M. Venkatraman, “An Ambiguity in the Definition of the Activity Coefficient at Infinite Dilution,”Metall. Trans. A, 77(8), 1484–1485(1986).

    Article  Google Scholar 

  137. T. Oishi, Y. Kondo, and K. Ono, “A Thermodynamic Study of Cu2O-CaO Melts in Equilibrium with Liquid Copper,”Trans. Jpn. Inst.Met. 27(12), 916–980(1986).

    Article  Google Scholar 

  138. H. St. C. O’Neill, “Systems Fe-O and Cu-O: Thermodynamic Data for the Equilibria Fe-‘FeO,’ Fe-Fe3O4, ‘FeO’-Fe3O4, Fe3O4-Fe2O3, Cu-Cu2O, and Cu2O-CuO from emf Measurements,”AmericanMineralogist, 73, 470–486 (1988).

    Google Scholar 

  139. M.S. Seehra, Z. Feng, and R. Gopalakrishnan, “Magnetic Phase Transitions in Cupric Oxide,”J. Phys. C, SolidStatePhys., 21, L1051 - L1054(1988).

    Article  ADS  Google Scholar 

  140. Y.A. Chang and K.-C. Hsieh, “Cu-O,”Phase Diagrams of Ternary Copper-Oxygen-Metal Systems, ASM International, Materials Park, OH, 19–25(1989).

    Google Scholar 

  141. R.D. Holmes, A.B. Kersting, and R.J. Arculus, “Standard Molar Gibbs Free Energy of Formation for Cu2O: High-Resolution Electrochemical Measurements from 900 to 1300 K,”J. Chem. Thermodyn., 27, 351–361(1989).

    Article  Google Scholar 

  142. J. Xue and R. Dieckmann, “The Non-Stoichiometry and the Point Defect Structure of Cuprous Oxide (Cu2_δO),”J. Phys. Chem. Solids, 51(11), 1263–1275(1990).

    Article  ADS  Google Scholar 

  143. A. Boudène, “Thermochemical Investigations in the System La-Sr-Cu-O,” Dr.-Ing. Dissertation, T.H. Aachen (1991) in German.

  144. A.T. Dinsdale, “SGTE Data for Pure Elements,”Calphad, 15(4), 317–425(1991).

    Article  Google Scholar 

  145. B. Sundman, “Modification of the Two-Sublattice Model for Liquids,”Calphad, 15(2), 109–119(1991).

    Article  Google Scholar 

  146. B. Sundman, “An Assessment of the Fe-O System,”J. Phase Equilibria, 12(1), l21–140(199l).

    Google Scholar 

  147. C. Boudène, K. Hack, A. Mohammad, D. Neuschütz, and E. Zimmermann, “Experimental Investigation and Thermochemical Assessment of the System Cu-O,”Z. Metallkd., 83(9), 663–668 (1992).

    Google Scholar 

  148. Scientific Group Thermodata Europe, SGTE Substance Database at KTH (1992).

  149. R.O. Suzuki, P. Bohac, and L.J. Gauckler, “Thermodynamics and Phase Equilibria in the Sr-Cu-O System,”J. Am. Ceram. Soc., 75(10), 2833–2842 (1992).

    Article  Google Scholar 

  150. R.O. Suzuki, P. Bohac, and L.J. Gauckler, “Thermodynamics and Phase Equilibria in the Ca-Cu-O System,”J. Am. Ceram. Soc., 77 (1), 41–48(1994).

    Article  Google Scholar 

  151. J. Xue and R. Dieckmann, “The High-Temperature Phase Diagram of the Cu-O System in the Stability Region of Cuprous Oxide (Cu2_δO),”High Temp.—High Press., 24, 271–284 (1992).

    Google Scholar 

  152. H. St. C. O’Neill and M.I. Pownceby, “Thermodynamic Data from Redox Reactions at High Temperatures. I. An Experimental and Theoretical Assessment of the Electrochemical Method Using Stabilized Zirconia Electrolytes, with Revised Values for the Fe-‘FeO, ’ Co-CoO, Ni-NiO and Cu-Cu2O Oxygen Buffers, and New Data for the W-W02 Buffer,”Contrib. Mineral. Petrol, 114, 296–314 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallstedt, B., Risold, D. & Gauckler, L.J. Thermodynamic assessment of the copper-oxygen system. JPE 15, 483–499 (1994). https://doi.org/10.1007/BF02649399

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649399

Keywords

Navigation