In Vitro Cellular & Developmental Biology

, Volume 26, Issue 2, pp 119–128

Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: A comparative study of angiogenesis in Matrigel, collagen, fibrin, and plasma clot

  • Roberto F. Nicosia
  • Antonio Ottinetti
Regular Papers

DOI: 10.1007/BF02624102

Cite this article as:
Nicosia, R.F. & Ottinetti, A. In Vitro Cell Dev Biol (1990) 26: 119. doi:10.1007/BF02624102


Rings of rat aorta cultured in Matrigel, a reconstituted gel composed of basement membrane molecules, gave rise to three-dimensional networks composed of solid cellular cords and occasional microvessels with slitlike lumina. Immunohistochemical and ultrastructural studies showed that the solid cords were composed of endothelial sprouts surrounded by nonendothelial mesenchymal cells. The angiogenic response of the aortic rings in Matrigel was compared to that obtained in interstitial collagen, fibrin, or plasma clot. Morphometric analysis demonstrated that the mean luminal area of the microvascular sprouts and channels was significantly smaller in Matrigel than in collagen, fibrin, or plasma clot. The percentage of patent microvessels in Matrigel was also markedly reduced. Autoradiographic studies of3H-thymidine-labeled cultures showed reduced DNA synthesis by developing microvessels in Matrigel. The overall number of solid endothelial cords and microvessels was lower in Matrigel than in fibrin or plasma clot. A mixed cell population isolated from Matrigel cultures formed a monolayer in collagen or fibrin-coated dishes but rapidly reorganized into a polygonal network when plated on Matrigel. The observation that gels composed of basement membrane molecules modulate the canalization, proliferation, and organization into networks of vasoformative endothelial cells in three-dimensional cultures supports the hypothesis that the basement membrane is a potent regulator of microvascular growth and morphogenesis.

Key words

angiogenesis basement membrane extracellular matrix endothelium 

Copyright information

© Tissue Culture Association 1990

Authors and Affiliations

  • Roberto F. Nicosia
    • 1
  • Antonio Ottinetti
    • 1
  1. 1.Department of PathologyThe Medical College of PennsylvaniaPhiladelphia

Personalised recommendations