[AH]

Aiello, W., and J. Hastad, Perfect Zero-Knowledge Languages Can Be Recognized in Two Rounds,*Proc. 28th FOCS*, 1987, pp. 439–448.

[Ba]

Babai, L., Trading Group Theory for Randomness,*Proc. 17th STOC*, 1985, pp. 421–429.

[BK]

Babai, L., and L. Kucera, Canonical Labeling of Graphs in Linear Average Time,*Proc. 20th FOCS*, 1979, pp. 39–46.

[Be]

Benaloh (Cohen), J. D., Cryptographic Capsules: A Disjunctive Primitive for Interactive Protocols,*Advances in Cryptology—Crypto 86 (Proceedings)*, A. M. Odlyzko (ed.), pp. 213–222, Lecture Notes in Computer Science, Vol. 263, Springer-Verlag, Berlin, 1987.

[BGG+.

Ben-or, M., O. Goldreich, S. Goldwasser, J. Hastad, J. Kilian, S. Micali, and P. Rogaway, Everything Provable Is Provable in Zero-Knowledge,*Advances in Cryptology—Crypto 88 (Proceedings)*, S. Goldwasser (ed.), pp. 37–56, Lecture Notes in Computer Science, Vol. 403, Springer-Verlag, Berlin, 1990.

[BM]

Blum, M., and S. Micali, How To Generate Cryptographically Strong Sequences of Pseudo-Random Bits,

*SIAM J. Comput.*, Vol. 13, 1984, pp. 850–864.

MATHCrossRefMathSciNet[BHZ]

Boppana, R., J. Hastad, and S. Zachos, Does Co-NP Have Short Interactive Proofs?,

*Inform. Process. Lett.*, Vol. 25, May 1987, pp. 127–132.

MATHCrossRefMathSciNet[BCC]

Brassard, G., D. Chaum, and C. Crepeau, Minimum Disclosure Proofs of Knowledge,

*J. Comput. System Sci.*, Vol. 37, No. 2, October 1988, pp. 156–189.

MATHCrossRefMathSciNet[BCDG]

Brickell E. F., D. Chaum, I. Damgard, and J. van de Graaf, Gradual and Verifiable Release of a Secret,*Advances in Cryptology—Crypto 87 (Proceedings)*, C. Pomerance (ed.), pp. 156–166, Lecture Notes in Computer Science, Vol. 293, Springer-Verlag, Berlin, 1987.

[C]

Chaum, D., Demonstrating that a Public Predicate Can be Satisfied Without Revealing Any Information About How,*Advances in Cryptology—Crypto 86 (Proceedings)*, A. M. Odlyzko (ed.), pp. 195–199, Lecture Notes in Computer Science, Vol. 263, Springer-Verlag, Berlin, 1987.

[CEG]

Chaum, D., J. H. Evertse, and J. van de Graaf, An Improved Protocol for Demonstrating Possession of a Discrete Logarithm Without Revealing It,*Advances in Cryptology— Eurocrypt 87 (Proceedings)*, D. Chaum and W. L. Price (eds.), pp. 127–142, Lecture Notes in Computer Science, Vol. 304, Springer-Verlag, Berlin, 1988.

[CEGP]

Chaum, D., J. H. Evertse, J. van de Graaf, and R. Peralta, Demonstrating Possession of a Discrete Logarithm Without Revealing It,*Advances in Cryptology—Crypto 86 (Proceedings)*, A. M. Odlyzko (ed.), pp. 200–212, Lecture Notes in Computer Science, Vol. 263, Springer-Verlag, Berlin, 1987.

[EGL]

Even, S., O. Goldreich, and A. Lempel, A Randomized Protocol for Signing Contracts,

*Comm. ACM*, Vol. 28, No. 6, 1985, pp. 637–647.

CrossRefMathSciNet[ESY]

Even, S., A. L. Selman, and Y. Yacobi, The Complexity of Promise Problems with Applications to Public-Key Cryptography

*Inform. Control*, Vol. 61, 1984, pp. 159–173.

MATHCrossRefMathSciNet[F]

Fortnow, L, The Complexity of Perfect Zero-Knowledge,*Proc. 19th STOC*, pp. 204–209, 1987.

[GK]

Goldreich, O., and A. Kahn, in preparation.

[GMW]

Goldreich, O., S. Micali, and A. Wigderson, Proofs that Yield Nothing but Their Validity and a Methodology of Cryptographic Protocol Design,

*J. Assoc. Comput. Math.*, Vol. 38, No. 1, 1991, pp. 691–729.

MATHMathSciNet[GO]

Goldreich, O., and Y. Oren, On the Cunning Power of Cheating Verifiers: Some Observations about Zero-Knowledge Proofs, in preparation.

[GM]

Goldwasser, S., and S. Micali, Probabilistic Encryption,

*J. Comput. System Sci.*, Vol. 28, No. 2, 1984, pp. 270–299.

MATHCrossRefMathSciNet[GMR]

Goldwasser, S., S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive Proof Systems,

*SIAM J. Comput.*, Vol. 18, No. 1, 1989, pp. 186–208. Early version appeared in

*Proc. 17th STOC*, 1985, pp. 291–304.

MATHCrossRefMathSciNet[GS]

Goldwasser, S., and M. Sipser, Private Coins vs. Public Coins in Interactive Proof Systems,*Proc. 18th STOC*, 1986, pp. 59–68.

[H]

Hastad, J., Psuedo-random Generators Under Uniform Assumptions,*Proc. 22nd STOC*, 1990, pp. 395–404.

[ILL]

Impagliazo, R., L. A. Levin, and M. Luby, Pseudorandom Generation from One-Way Functions,*Proc. 21st STOC*, 1989, pp. 12–24.

[IY]

Impagliazo, R., and M. Yung, Direct Minimum-Knowledge Computations,*Advances in Cryptology—Crypto 87 (Proceedings)*, C. Pomerance (ed.), pp. 40–51, Lecture Notes in Computer Science, Vol. 293, Springer-Verlag, Berlin, 1987.

[Ka]

Kaliski, B. S., Elliptic Curves and Cryptography: A Pseudorandom Bit Generator and Other Tools. Ph.D. Thesis, MIT/LCS/TR-411, Massachusetts Institute of Technology, 1988.

[Kuc]

Kucera, L., Canonical Labeling of Regular Graphs in Linear Average Time,*Proc. 28th FOCS*, 1987, pp. 271–279.

[Kus]

Kushilevitz, E., Perfect Zero-Knowledge Proofs, Master Thesis, Technion, 1989 (in Hebrew). A translation in English of the subsection concerning the parallel execution of the basic protocol is available from the author.

[N]

Naor, M., Bit Commitment Using Pseudorandomness,*Advances in Cryptology—Crypto 89 (Proceedings)*, G. Brassard, (ed.), pp. 128–136, Lecture Notes in Computer Science, Vol. 435, Springer-Verlag, Berlin, 1990.

[Od]

Odlyzko, A., Discrete Logarithm in Finite Fields and Their Cryptographic Significance,*Proc. Eurocrypt 84*, pp. 224–314, Lecture Notes in Computer Science, Vol. 209, Springer-Verlag, Berlin, 1985.

[Or]

Oren, Y., On the Cunning Power of Cheating Verifiers: Some Observations about Zero-Knowledge Proofs,*Proc. 28th FOCS*, 1987, pp. 462–471.

[RS]

Rosser, J., and L. Schoenfield, Approximate Formulas for Some Functions of Prime Numbers,*Illinois J. Math.*, Vol. 6, 1961, pp. 64–94.

[S]

Shamir A., IP=PSPACE,*Proc. 31st FOCS*, 1990, pp. 11–15.

[TW]

Tompa, M., and H. Woll, Random Self-Reducibility and Zero-Knowledge Interactive Proofs of Possession of Information,*Proc. 28th FOCS*, 1987, pp. 472–482.

[Y]

Yao, A. C., Theory and Applications of Trapdoor Functions,*Proc. 23rd FOCS*, 1982, pp. 80–91.