manuscripta mathematica

, Volume 78, Issue 1, pp 99–110

Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces

  • Hans-Gerd Leopold
  • Elmar Schrohe
Article

DOI: 10.1007/BF02599303

Cite this article as:
Leopold, HG. & Schrohe, E. Manuscripta Math (1993) 78: 99. doi:10.1007/BF02599303

Abstract

The algebra of pseudodifferential operators with symbols inS1,δ0, δ<1, is shown to be a spectrally invariant subalgebra of ℒ(bp,qs) and ℒ(Fp,qs).

The spectrum of each of these pseudodifferential operators acting onBp,qs orFp,qs is independent of the choice ofs, p, andq.

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Hans-Gerd Leopold
    • 1
    • 2
  • Elmar Schrohe
    • 1
    • 2
  1. 1.Mathematische Fakultät Friedrich-Schiller-UniversitätUniversitätshochhaus 17. OGJenaBundesrepublik Deutschland
  2. 2.Fachbereich MathematikJohannes Gutenberg-UniversitätMainzBundesrepublik Deutschland