Skip to main content
Log in

Water and magma generation at subduction zones

  • Chapter I: Physico-chemical Aspect Of Magma Generation
  • Published:
Bulletin Volcanologique Aims and scope Submit manuscript

Abstract

The basaltic ocean crust, metasomatized and metamorphosed during and after generation at the ocean ridge, contains H2O stored in minerals and pore fluid. Phase equilibrium data establish the conditions for dehydration, and the conditions for melting of amphibole-gabbro or amphibole-quartz-eclogite, or for quartz-eclogite or mantle peridotite if aqueous fluids are available. But there is no concensus about the temperature distribution through the subducted crust, or within the overlying mantle wedge. Therefore, a variety of magmatic models can be derived from the experimental data. According to some calculations, endothermic dehydration reactions in the depth interval 75–125 km cool the oceanic crust to such an extent that it cannot be a major source of magmas; instead, concentrated aqueous fluids released from the crust generate magmas in the overlying peridotite. However, according to most existing thermal models, if temperatures in ocean crust are cool enough to prohibit melting of amphibolite, then temperatures in the mantle above the main sources of expelled fluids are too low for hydrous melting. The ocean crust appears to be effectively dehydrated by 100–125 km depth. Dense hydrous magnesian silicates are not likely candidates for deeper H2O transport. The extent to which H2O can be fixed in metasomatic phlogopite in crust or mantle is a significant but undetermined factor. Experimental data on minerals and liquid compositions do not support the concept of primary magmas for andesites and associated lavas from mantle or subducted crust. Complex, multi-stage processes appear to be more likely, which is consistent with recent interpretations of geochemical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. C., Boettcher, A. L., andMarland, G., 1975,Amphiboles in Andesite and Basalt. I. Stability as a Function of P-T-fO2. Amer. Miner.,60, p. 1069–1085.

    Google Scholar 

  • Anderson, A. T., 1975,Some Basaltic and Andesitic Gases. Rev. Geophys. Space Physics,13, p. 37–55.

    Google Scholar 

  • Anderson, R. N., Uyeda, S., andMiyashiro, A., 1976,Geophysical and Geochemical Constraints at Converging Plate Boundaries - Part I: Dehydration in the Downgoing Slab. Geophys. Jour. R. Astr. Soc.,44, p. 333–357.

    Google Scholar 

  • —————, andSchwarz, W. M., 1978,Thermal Model for Subduction with Dehydration in the Downgoing Slab. Jour. Geol.,86, p. 731–739.

    Article  Google Scholar 

  • Barazangi, M., andIsacks, B. L., 1976,Spatial Distribution of Earthquakes and Subduction of the Nazca Plate beneath South America. Geology,4, p. 686–692.

    Article  Google Scholar 

  • Boettcher, A. L., 1973,Volcanism and Orogenic Belts - the Origin of Andesites. Tectonophysics,17, p. 223–240.

    Article  Google Scholar 

  • Brown, G. M., Holland, J. G., Sigurdsson, H., Tomblin, J. F., andArculus, R. J., 1977,Geochemistry of the Lesser Antilles Volcanic Island Arc. Geochim. Cosmochim. Acta,41, p. 785–801.

    Article  Google Scholar 

  • Delany, J. M., andHelgeson, H. C., 1978,Calculation of the Thermodynamic Consequences of Dehydration in Subducting Oceanic Crust to 100 Kb and >800°C. Amer. Jour. Sci.,278, p. 638–686.

    Article  Google Scholar 

  • Dickinson, W. R., 1971,Plate Tectonic Model of Geosynclines. Earth Planet. Sci. Letters,10, p. 165–174.

    Article  Google Scholar 

  • Essene, E. J., Hensen, B. J., andGreen, D. H., 1970,Experimental Study of Amphibolite and Eclogite Stability. Phys. Earth Planet. Interiors,3, p. 378–384.

    Article  Google Scholar 

  • Fyee, W. S., andMcBirney, A. R., 1975,Subduction and the Structure of Andesitic Belts. Amer. Jour. Sci.,275-A, p. 285–297.

    Google Scholar 

  • Gill, J. B., 1974,Role of Underthrust Oceanic Crust in the Genesis of a Fijian Calc-alkaline Suite. Contr. Mineral. Petrol.,43, p. 29–45.

    Article  Google Scholar 

  • Green, D. H., 1976,Experimental Testing of « Equilibrium » Partial Melting of Peridotite under Water-saturated, High-pressure Conditions. Can. Miner.,14, p. 255–268.

    Google Scholar 

  • Green, T. H., 1972,Crystallization of Calc-alkaline Andesite under Controlled High-pressure Hydrous Conditions. Contr. Mineral. Petrol.,34, p. 150–166.

    Article  Google Scholar 

  • —————, andRingwood, A. E., 1968,Genesis of the Calc-alkaline Igneous Rock Suite. Contr. Mineral. Petrol.,18, p. 105–162.

    Article  Google Scholar 

  • —————, andRingwood, A. E., 1972,Crystallization of Garnet-bearing Rhyodacite under High-pressure Hydrous Conditions. Jour. Geol. Soc. Australia,19, p. 203–212.

    Google Scholar 

  • Hasebe, R., Fujh, N., andUyeda, S., 1970,Thermal Processes under Island Arcs. Tectonophysics,10, p. 335–355.

    Article  Google Scholar 

  • Huang, W. L., andWyllie, P. J., 1973,Melting Relations of Muscovite-Granite to 35 kbar as a Model for Fusion of Metamorphosed Subducted Oceanic Sediments. Contr. Mineral. Petrol.,42, p. 1–14.

    Article  Google Scholar 

  • James, D. E., 1978,Subduction of the Nazca Plate beneath Central Peru. Geology,6, p. 174–178.

    Article  Google Scholar 

  • Kay, R. W., 1977,Geochemical Constraints on the Origin of Aleutian Magmas. In: M. Talwani and W. C. Pitman III, Eds.,Island Arcs, Deep Sea Trenches and Back-Basins. Maurice Ewing Series 1, American Geophysical Union, Washington, DC, 229–242.

    Google Scholar 

  • Kushiro, I., 1972,Effect of Water on the Composition of Magmas Formed at High Pressures. Jour. Petrol.,13, p. 311–334.

    Google Scholar 

  • Lamberi, I. B., andWyllie, P. J., 1972,Melting of Gabbro (Quartz Eclogite) with Excess Water to 35 kilobars, with Geological Applications. Jour. Geol.,80, p. 693–708.

    Google Scholar 

  • Marsh, B. D., 1976,Some Aleutian Andesites: Their Nature and Source. Jour. Geol.,84, p. 27–45.

    Google Scholar 

  • —————, andCarmichael, I. S. E., 1974,Benioff Zone Magmatism. Jour. Geophys. Res.,79, p. 1196–1206.

    Google Scholar 

  • Minear, J. W., andToksöz, 1970,Thermal Regime of a Downgoing Slab and New Global Tectonics. Jour Geophys. Res.,75, p. 1397–1419.

    Google Scholar 

  • Miyashiro, A., 1975,Island Arc Volcanic Rock Series: a Critical Review. Petrologie,1, p. 177–187.

    Google Scholar 

  • Mysen, B. O., andBoettcher, A. L., 1975,Melting of a Hydrous Mantle. Jour. Petrol.,16, p. 520–548- a p. 549–593.

    Google Scholar 

  • Nehru, C. E., andWyllie, P. J., 1075,Compositions of Glasses from St. Paul’s Peridotite Partially Melted at 20 kilobars. Jour. Geol.,83, p. 455–471.

    Google Scholar 

  • Nicholls, I. A., 1074,Liquids in Equilibrium with Peridotitic Mineral Assemblages at High water Pressures. Contr. Mineral. Petrol.,45, p. 289–316.

    Article  Google Scholar 

  • —————, andRingwood, A. E., 1973,Effect of Water on Olivine Stability in Tholeiites and Production of Silica-saturated Magmas in the Island-arc Environment. Jour. Geol.,81, p. 285–300.

    Article  Google Scholar 

  • Oxburgh, E. R., andTurcotte, D. L., 1970,Thermal Structure of Island Arcs. Geol. Soc. America Bull.,81, p. 1665–1688.

    Article  Google Scholar 

  • —————, and —————, 1976,The Physico-chemical Behavior of the Descending Lithosphere. Tectonophysics,32, p. 107–128.

    Article  Google Scholar 

  • Ringwood, A. E., 1975,Composition and Petrology of the Earth’s Mantle. McGraw-Hill, New York.

    Google Scholar 

  • Stern, C. R., 1974,Melting Products of Olivine Tholeiite Basalt in Subduction Zones. Geology,2, p. 227–230.

    Article  Google Scholar 

  • —————, andWyllie, P. J., 1973,Melting Relations of Basalt-Andesite-Rhyolite-H 2 O and a Pelagic Red Clay at 30 kilobars. Contr. Mineral. Petrol.,42, p. 313–323.

    Article  Google Scholar 

  • —————, and —————, 1975,Effect of Iron-Absorption by Noble-metal Capsules on Phase Boundaries in Rock-melting Experiments at 30 kilobars. Amer. Mineral.,60, p. 681–689.

    Google Scholar 

  • —————, and —————, 1978,Chemical Compositions of Phases Through the Melting Intervals of Hydrous Basalt and Andesite Compositions at 30 kb: Their Implications for Magma Genesis along Convergent Plate Boundaries. Amer. Mineral,63, p. 641–663.

    Google Scholar 

  • —————, andWyllie, P. J., 1975,Basalt-Andesite-Rhyolite-H 2 O: Crystallization Intervals with Excess H 2 O and H 2 O-Undersaturated Liquids Surfaces to 35 kilobars, with Implications for Magma Genesis. Earth Planet. Sci. Lett.,26, p. 189–196.

    Article  Google Scholar 

  • Toksöz, M. N., Minear, J. W., andJulian, B. R., 1971,Temperature Field and Geophysical Effects of a Downgoing Slab. Jour. Geophys. Res.,76, p. 1113–1138.

    Article  Google Scholar 

  • Wyllie, P. J., 1971,The Dynamic Earth: a Textbook in Geosciences. John Wiley & Sons, Inc., New York, 416 pp.

    Google Scholar 

  • —————, 1973,Experimental Petrology and Global Tectonics-a Preview. Tectonophysics,17, p. 189–209.

    Article  Google Scholar 

  • —————, 1979,Magmas and Volatile Components. Amer. Mineral.,64, p. 469–500.

    Google Scholar 

  • Yamamoto, K., andAkimoto, S., 1977,The System MgO-SiO2-H2O at High Pressures and Temperatures - Stability Field for Hydroxyl - Chondrodite, Hydroxyl - Clinohumite and 10 Å-phase. Amer. Jour. Sci.,277, p. 288–312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyllie, P.J. Water and magma generation at subduction zones. Bull Volcanol 41, 360–377 (1978). https://doi.org/10.1007/BF02597371

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02597371

Keywords

Navigation