[1965]

Chu Yoeng-jin andLiu Tseng-hung, On the shortest arborescence of a directed graph,*Scientia Sinica*
**4** (1965) 1396–1400.

[1959]

E. W. Dijkstra, A note on two problems in connexion with graphs,

*Numer. Math.*
**1** (1959) 269–271.

MATHCrossRefMathSciNet [1965]

J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices,

*J. Res. Nat. Bur. Standards Sect. B*
**69** (1965) 125–130.

MATHMathSciNet [1967]

J. Edmonds, Optimum branchings,

*J. Res. Nat. Bur. Standards Sect. B*
**71** (1967) 233–240.

MATHMathSciNet [1970]

J. Edmonds, Submodular functions, matroids, and certain polyhedra, in:*Combinatorial structures and their applications, Proc. Intern. Conf. Calgary, Alb.*, 1969 (R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds.), Gordon and Breach, New York, 1970, 69–87.

[1970a]

J. Edmonds andE. L. Johnson, Matching: a well-solved class of integer linear programs, —ibid. 89–92.

[1973]

J. Edmonds, Edge-disjoint branchings, in:*Combinatorial algorithms, Courant Comp. Sci. Symp.* Monterey, Ca., 1972 (R. Rustin, ed.), Acad. Press, New York, 1973, 91–96.

[1979]

J. Edmonds, Matroid intersection,

*Annals of Discrete Math.*
**4** (1979) 39–49.

MATHMathSciNet [1977]

J. Edmonds and

R. Giles, A min-max relation for submodular functions on graphs,

*Annals of Discrete Math.*
**1** (1977) 185–204.

MathSciNetCrossRef [1973]

J. Edmonds and

E. L. Johnson, Matching, Euler tours and the Chinese postman,

*Math. Programming*
**5** (1973) 88–124.

MATHCrossRefMathSciNet [1956]

L. R. Ford and

D. R. Fulkerson, Maximum flow through a network,

*Canad. J. Math.*
**8** (1956) 399–404.

MATHMathSciNet [1962]

L. R. Ford and

D. R. Fulkerson,

*Flows in networks*, Princeton Univ. Press, Princeton, N. J., 1962.

MATH [1980]

A. Frank, On the orientations of graphs,

*J. Combinatorial Theory (B)*
**28** (1980) 251–260.

MATHCrossRef [1979]

A. Frank, Kernel systems of directed graphs,

*Acta Sci. Math.* (Szeged)

**41** (1979) 63–76.

MATHMathSciNet [1981]

A. Frank, How to make a digraph strongly connected,

*Combinatorica*
**1** (2) (1981) 145–153.

MATHMathSciNet [1968]

D. R. Fulkerson, Networks, frames, and blocking systems, in:*Mathematics of the decision sciences*, Part I (G. B. Dantzig and A. F. Veinott, eds.), Amer. Math. Soc., Providence, R. I., 1968, 303–334.

[1970b]

D. R. Fulkerson, Blocking polyhedra, in:*Graph theory and its applications, Proc. adv. Seminar Madison*, Wis., 1969 (B. Harris, ed.), Acad. Press, New York, 1970, 93–112.

[1974]

D. R. Fulkerson, Packing rooted directed cuts in a weighted directed graph,

*Math. Programming*
**6** (1974) 1–13.

MATHCrossRefMathSciNet [1981]

P. Gács and

L. Lovász, Khachiyan’s algorithm for linear programming,

*Math. Programming Studies*
**14** (1981) 61–68.

MATH [1979]

M. R. Garey and

D. S. Johnson,

*Computers and intractability: a guide to the theory of NP-completeness*, Freeman, San Francisco, 1979.

MATH [1960]

A. J. Hoffman, Some recent applications of the theory of linear inequalities to extremal combinatorial analysis, in:*Combinatorial analysis, Proc. 10th Symp. on Appl. Math. Columbia Univ.*, 1958 (R. E. Bellman and M. Hall, Jr, eds.), Amer. Math. Soc., Providence, R. I., 1960, 113–127.

[1979]

I. Holyer, The NP-completeness of edge-colouring,*SIAM J. Comp.*, to appear.

[1963]

T. C. Hu, Multicommodity network flows,

*Operations Res.*
**11** (1963) 344–360.

MATHCrossRef [1973]

T. C. Hu, Two-commodity cut-packing problem,

*Discrete Math.*
**4** (1973) 108–109.

MATH [1979]

A. V. Karzanov, On the minimal number of arcs of a digraph meeting all its directed cutsets,*to appear*.

[1979]

L. G. Khachiyan, A polynomial algorithm in linear programming,

*Doklady Akademii Nauk SSSR*
**244** (1979) 1093–1096 (English translation:

*Soviet Math. Dokl.*
**20,** 191–194).

MATHMathSciNet [1970c]

E. L. Lawler, Optimal matroid intersections, in:*Combinatorial structures and their applications, Proc. Intern. Conf. Calgary, Alb.*, 1969 (R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds.), Gordon and Breach, New York, 1970, 233–235.

[1976]

E. L. Lawler,

*Combinatorial optimization: networks and matroids*, Holt, Rinehart and Winston, New York, 1976.

MATH [1972]

L. Lovász, Normal hypergraphs and the perfect graph conjecture,

*Discrete Math.*
**2** (1972) 253–267.

MATHCrossRefMathSciNet [1975]

L. Lovász, 2-Matchings and 2-covers of hypergraphs,

*Acta Math. Acad. Sci. Hungar.*
**26** (1975) 433–444.

MATHCrossRefMathSciNet [1978]

L. Lovász, The matroid matching problem,*Proc. Conf. Algebraic Methods in Graph Theory* (Szeged, 1978), to appear.

[1979]

L. Lovász, On the Shannon capacity of a graph,

*IEEE Trans. on Information Theory*
**25** (1979) 1–7.

MATHCrossRef [1981]

L. Lovász, Perfect graphs, in:*More selected topics in graph theory* (L. W. Beineke and R. J. Wilson, eds), to appear

[1976]

C. L. Lucchesi, A minimax equality for directed graphs,*Doctoral Thesis*, Univ. Waterloo, Waterloo, Ont., 1976.

[1978]

C. L. Lucchesi and

D. H. Younger, A minimax relation for directed graphs,

*J. London Math. Soc. (2)*
**17** (1978) 369–374.

MATHCrossRefMathSciNet [1980]

G. J. Minty, On maximal independent sets of vertices in claw-free graphs,

*J. Combinatorial Theory (B)*,

**28** (1980) 284–304.

MATHCrossRefMathSciNet [1954]

T. S. Motzkin and

I. J. Schoenberg, The relaxation method for linear inequalities,

*Canad. J. Math.*
**6** (1954) 393–404.

MATHMathSciNet [1979]

H. Okamura andP. D. Seymour, Multicommodity flows in planar graphs,*J. Combinatorial Theory (B)*, to appear.

[1979]

M. W. Padberg andM. R. Rao, Minimum cut-sets and b-matchings,*to appear*.

[1980]

A. Schrijver, A counterexample to a conjecture of Edmonds and Giles,

*Discrete Math.*
**32** (1980) 213–214.

MATHMathSciNet [1977]

P. D. Seymour, The matroids with the max-flow min-cut property,

*J. Combinatorial Theory (B)*
**23** (1977) 189–222.

MATHCrossRefMathSciNet [1978]

P. D. Seymour, A two-commodity cut theorem,

*Discrete Math.*
**23** (1978) 177–181.

MATHCrossRefMathSciNet [1970]

N. Z. Shor, Convergence rate of the gradient descent method with dilatation of the space,*Kibernetika*
**2** (1970) 80–85 (English translation:*Cybernetics*
**6** (1970) 102–108).