Combinatorica

, Volume 3, Issue 3, pp 375–380

Bounds on the number of Eulerian orientations

Authors

  • A. Schrijver
    • Department of EconometricsTilburg University
    • Mathematical Centre
Article

DOI: 10.1007/BF02579193

Cite this article as:
Schrijver, A. Combinatorica (1983) 3: 375. doi:10.1007/BF02579193

Abstract

We show that each loopless 2k-regular undirected graph onn vertices has at least\(\left( {2^{ - k} \left( {_k^{2k} } \right)} \right)^n \) and at most\(\sqrt {\left( {_k^{2k} } \right)^n } \) eulerian orientations, and that, for each fixedk, these ground numbers are best possible.

AMS subject classification (1980)

05 C 4505 C 3015 A 15

Copyright information

© Akadémiai Kiadó 1983