Combinatorica

, Volume 3, Issue 3, pp 331–339

On functions of strengtht

Authors

  • M. Deza
    • C.N.R.S.
  • P. Frankl
    • C.N.R.S.
  • N. M. Singhi
    • School of Mathematics T.I.F.R.
Article

DOI: 10.1007/BF02579189

Cite this article as:
Deza, M., Frankl, P. & Singhi, N.M. Combinatorica (1983) 3: 331. doi:10.1007/BF02579189

Abstract

For a finite setX, a functionf:P(X) →Z is said to have strengtht if\(\sum\limits_{A\underline{\underline \subset } B} {f(B) = 0} \) for allAP (X), |A|≦t. Supports of functions of strengtht define a matroid onP(X). We study the circuits in this matroid. Some other related problems are also discussed.

AMS subject classification (1980)

05 B 35

Copyright information

© Akadémiai Kiadó 1983