, Volume 20, Issue 2, pp 177–189

Fast parallel and sequential computations and spectral properties concerning band Toeplitz matrices

  • D. Bini
  • M. Capovani

DOI: 10.1007/BF02575591

Cite this article as:
Bini, D. & Capovani, M. Calcolo (1983) 20: 177. doi:10.1007/BF02575591


We exhibit fast computational methods for the evaluation of the determinant and the characteristic polynomial of a (2k+1)-diagonal Toeplitz matrix with elements in the complex field, either for sequential or for parallel computations. A fast algorithm, to achieve one step of Newton's method, is shown to be suitable to compute the eigenvalues of such a matrix. Bounds to the eigenvalues and necessary and sufficient conditions for positive definiteness, which are easy to check, are given either for matrices with scalar elements or for matrices with blocks. In the case in which the blocks are themselves band Toeplitz matrices such conditions assume a very simple form.

Copyright information

© Instituto di Elaborazione della Informazione del CNR 1984

Authors and Affiliations

  • D. Bini
    • 1
  • M. Capovani
    • 2
  1. 1.Dipartimento di Matematica dell'Università di PisaPisaItaly
  2. 2.Dipartimento di Informatica dell'Università di PisaPisaItaly