, Volume 8, Issue 3, pp 255-272

A transformation of series

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The transformation (*) $$\sum\limits_{\nu = 0}^\infty {t_\nu z^\nu \to } \sum\limits_{\nu = 0}^\infty {\left\{ {\sum\limits_{\tau = 0}^{h - 1} {z^\tau } \Delta ^\nu t_{h\nu + \tau } + \frac{{z^h }}{{1 - z}}\Delta ^\nu t_{h(\nu + 1)} } \right\}} \left( {\frac{{z^{h + 1} }}{{1 - z}}} \right)^\nu$$ whereh≥0 is an integer and Δ operates upon the coefficients {t v } of the series being transformed, is derived. Whenh=0, the above transformation is the generalised Euler transformation, of which (*) is itself a generalisation. Based upon the assumption that \(t_\nu = \int\limits_0^1 {\varrho ^\nu d\sigma (\varrho ) } (\nu = 0, 1,...)\) , where σ(ϱ) is bounded and non-decreasing for 0≤ϱ≤1 and subject to further restrictions, a convergence theory of (*) is given. Furthermore, the question as to when (*) functions as a convergence acceleration transformation is investigated. Also the optimal valne ofh to be taken is derived. A simple algorithm for constructing the partial sums of (*) is devised. Numerical illustrations relating to the case in whicht v =(v+1) −1 (v=0,1,...) are given.

Work supported by NSF Grant GP-26010.