Discrete & Computational Geometry

, Volume 6, Issue 3, pp 407–422

Euclidean minimum spanning trees and bichromatic closest pairs

Authors

  • Pankaj K. Agarwal
    • Department of Computer ScienceDuke University
  • Herbert Edelsbrunner
    • Department of Computer ScienceUniversity of Illinois at
  • Otfried Schwarzkopf
    • Institut für Informatik, Fachbereich MathematikFreie Universität Berlin
  • Emo Welzl
    • Institut für Informatik, Fachbereich MathematikFreie Universität Berlin
Article

DOI: 10.1007/BF02574698

Cite this article as:
Agarwal, P.K., Edelsbrunner, H., Schwarzkopf, O. et al. Discrete Comput Geom (1991) 6: 407. doi:10.1007/BF02574698

Abstract

We present an algorithm to compute a Euclidean minimum spanning tree of a given setS ofN points inEd in timeO(Fd(N,N) logdN), whereFd(n,m) is the time required to compute a bichromatic closest pair amongn red andm green points inEd. IfFd(N,N)=Ω(N1+ε), for some fixed ɛ>0, then the running time improves toO(Fd(N,N)). Furthermore, we describe a randomized algorithm to compute a bichromatic closest pair in expected timeO((nm logn logm)2/3+m log2n+n log2m) inE3, which yields anO(N4/3 log4/3N) expected time, algorithm for computing a Euclidean minimum spanning tree ofN points inE3. Ind≥4 dimensions we obtain expected timeO((nm)1−1/([d/2]+1)+ε+m logn+n logm) for the bichromatic closest pair problem andO(N2−2/([d/2]+1)ε) for the Euclidean minimum spanning tree problem, for any positive ɛ.

Download to read the full article text

Copyright information

© Springer-Verlag New York Inc 1991