[A]

N. Amenta. Finding a line transversal of axial objects in three dimensions*Proceeding of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms*, 1992, pages 66–71.

[AGPW]

B. Aronov, J. E. Goodman, R. Pollack, and R. Wenger. There is no Hadwiger number for line transversals in higher dimensions. Unpublished manuscript, cited in [GPW], Theorem 2.9.

[AD]

D. Avis and M. Doskas. Algorithms for high dimensional stabbing problems,

*Discrete Applied Mathematics*, vol. 27 (1990), pages 39–48.

MATHMathSciNetCrossRef[AH]

D. Avis and M. E. Houle. Computational aspects of Helly’s theorem and its relatives,*Proceedings of the Third Canadian Conference on Computational Geometry*, 1991, pages 11–14.

[CM]

B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization problems in fixed dimension,*Proceeding of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms*, 1993, pages 281–290.

[C]

K. L. Clarkson. Las Vegas algorithms for linear and integer programming when the dimension is small, Manuscript, 1990. An earlier version appeared in*Proceedings of the 29th Annual Symposium on Foundations of Computer Science*, 1988, pages 452–455.

[DGK]

L. Danzer, B. Grünbaum, and V. Klee Helly’s theorem and its relatives,*Proceedings of the Symposium on Pure Mathematics*, vol. 7, 1963, pages. 101–180. American Mathematical Society, Providence, RI.

[D1]

J. Demmel. The componentwise distance to the nearest singular matrix,

*SIAM Journal of Matrix Analysis and Applications*, vol. 13, no. 1 (1992), pages 10–19.

MATHMathSciNetCrossRef[D2]

M. Dyer. On a multidimensional search technique and its application to the Euclidean one-center problem,

*SIAM Journal on Computing* vol. 15 (1986), pages 725–738.

MATHMathSciNetCrossRef[D3]

M. Dyer. A class of convex programs with applications to computational geometry,*Proceedings of the 8th Annual Symposium on Computational Geometry*, 1992, pages 9–15.

[E]

J. Eckhoff. Helly, Radon- and Carathody type theorems, in*Handbook of Convex Geometry*, P. M. Gruber and J. M. Willis, eds., Chapter 2.1. Elsevier Science, Amsterdam, 1993.

[EW]

P. Egyed and R. Wenger. Stabbing pairwise disjoint translates in linear time,*Proceedings of the 5th Annual Symposium on Computational Geometry*, 1989, pages 364–369.

[GPW]

J.E. Goodman, R. Pollack, and R. Wenger, Geometric transversal theory, in*New Trends in Discrete and Computational Geometry*. Springer-Verlag, New York (to appear).

[GM]

B. Grünbaum and T. S. Motzkin. On components in some families of sets,

*Proceedings of the American Mathematical Society*, vol. 12 (1961), pages 607–613.

MATHMathSciNetCrossRef[H]

A. J. Hoffman. Binding constraints and Helly numbers,

*Annals of the New York Academy of Sciences*, vol. 319 (1979), pages 284–288.

CrossRef[K]

G. Kalai. A subexponential randomized simplex algorithm,*24th Annual ACM Symposium on the Theory of Computation*, 1992, pages 475–482.

[MSW]

J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming,*Proceedings of the 8th Annual Symposium on Computational Geometry*, 1992, pages 1–8.

[M1]

N. Megiddo. Linear programming in linear time when the dimension is fixed.

*SIAM Journal on Computing*, vol. 12 (1983), pages 759–776.

MATHMathSciNetCrossRef[M2]

N. Megiddo. On the ball spanned by balls,

*Discrete and Computational Geometry*, vol. 4 (1989), pages 605–610.

MATHMathSciNetCrossRef[M3]

N. Megiddo. Personal communication (1991).

[PR]

S. Poljak and J. Rohn. Radius of nonsingularity,*Mathematics of Systems, Signals and Control* (to appear).

[R]

J. Rohn. Linear interval equations,

*Linear Algebra and Its Applications*, vol. 126 (1989), pages 39–78.

MATHMathSciNetCrossRef[S]

R. Seidel. Linear programming and convex hulls made easy,*Proceedings of the 6th Annual Symposium on Computational Geometry*, 1990, pages 211–215.

[SW]

M. Sharir and E. Welzl. A combinatorial bound for linear programming and related problems,*Proceedings of the 9th Annual Symposium on Theoretical Aspects of Computer Science*, 1992, pages 569–579. Lecture Notes in Computer Science, vol. 577 Springer-Verlag, Berlin.

[T1]

S. Toledo. Extremal polygon containment problems,*Proceedings of the 7th Annual Symposium on Computational Geometry*, 1991, pages 176–185.

[T2]

H. Tverberg. Proof of Grünbaum’s conjecture on common transversals for translates,

*Discrete and Computational Geometry*, vol. 4 (1989), pages 191–203.

MATHMathSciNetCrossRef