, Volume 12, Issue 1, pp 223-236

Areas of polygons inscribed in a circle

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Heron of Alexandria showed that the areaK of a triangle with sidesa,b, andc is given by $$K = \sqrt {s(s - a)(s - b)(s - c)} ,$$ wheres is the semiperimeter (a+b+c)/2. Brahmagupta gave a generalization to quadrilaterals inscribed in a circle. In this paper we derive formulas giving the areas of a pentagon or hexagon inscribed in a circle in terms of their side lengths. While the pentagon and hexagon formulas are complicated, we show that each can be written in a surprisingly compact form related to the formula for the discriminant of a cubic polynomial in one variable.