Semigroup Forum

, Volume 41, Issue 1, pp 97–114

Resolvent estimates for schrödinger operators inLP(RN) and the theory of exponentially boundedC-semigroups

  • M. M. H. Pang
Research Article

DOI: 10.1007/BF02573381

Cite this article as:
Pang, M.M.H. Semigroup Forum (1990) 41: 97. doi:10.1007/BF02573381


Let −Δ be the Dirichlet Laplacian onRN and letV be a potential satisfyingV+KlocN andV∈KN. Using the Gaussian upper bound for the heat kernel ofe(Δ−v)t we obtain estimates for growth of ‖(z−Δ+V)−1p,p in the region {z: Im(z)≠0} and show that Δ−V generates an (N+2)-times integrated semigroup onLp(RN), 1≤p≤∞. A sharper estimate for the resolvent is obtained ifV is further assumed to be either in\(\{ V:\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{V} \in L^1 (R^N )\} \) or {V:V(x)≥c|x|4N/(N+2)+c for all |x|≥P>0}.

Copyright information

© Springer-Verlag New York Inc 1990

Authors and Affiliations

  • M. M. H. Pang
    • 1
  1. 1.Department of MathematicsKing’s College LondonLondonEngland