Discrete & Computational Geometry

, Volume 14, Issue 4, pp 385–410

Almost tight upper bounds for the single cell and zone problems in three dimensions

Authors

  • D. Halperin
    • Robotics Laboratory, Department of Computer ScienceStanford University
  • M. Sharif
    • School of Mathematical SciencesTel Aviv University
    • Courant Institute of Mathematical SciencesNew York University
Article

DOI: 10.1007/BF02570714

Cite this article as:
Halperin, D. & Sharif, M. Discrete & Computational Geometry (1995) 14: 385. doi:10.1007/BF02570714

Abstract

We consider the problem of bounding the combinatorial complexity of a single cell in an arrangement ofn low-degree algebraic surface patches in 3-space. We show that this complexity isO(n2+ε), for any ε>0, where the constant of proportionality depends on ε and on the maximum degree of the given surfaces and of their boundaries. This extends several previous results, almost settles a 9-year-old open problem, and has applications to motion planning of general robot systems with three degrees of freedom. As a corollary of the above result, we show that the overall complexity of all the three-dimensional cells of an arrangement ofn low-degree algebraic surface patches, intersected by an additional low-degree algebraic surface patch σ (the so-calledzone of σ in the arrangement) isO(n2+ε), for any ε>0, where the constant of proportionality depends on ε and on the maximum degree of the given surfaces and of their boundaries.

Copyright information

© Springer-Verlag New York Inc. 1995