Discrete & Computational Geometry

, Volume 14, Issue 3, pp 237–259

Minimal-energy clusters of hard spheres

Authors

  • N. J. A. Sloane
    • Mathematical Sciences Research CenterAT & T Bell Laboratories
  • R. H. Hardin
    • Mathematical Sciences Research CenterAT & T Bell Laboratories
  • T. D. S. Duff
    • Mathematical Sciences Research CenterAT & T Bell Laboratories
  • J. H. Conway
    • Mathematics DepartmentPrinceton University
Article

DOI: 10.1007/BF02570704

Cite this article as:
Sloane, N.J.A., Hardin, R.H., Duff, T.D.S. et al. Discrete & Computational Geometry (1995) 14: 237. doi:10.1007/BF02570704

Abstract

What is the tightest packing ofN equal nonoverlapping spheres, in the sense of having minimal energy, i.e., smallest second moment about the centroid? The putatively optimal arrangements are described forN≤32. A number of new and interesting polyhedra arise.

Copyright information

© Springer-Verlag New York Inc. 1995