Aashtiani, H.Z., and T.L. Magnanti (1981).*Equilibria on a congested transportation network*. SIAM J. Algebraic and Discrete Methods**2**, 213–226.

Beckmann, M., C.B. McGuire and C.B. Winsten (1956).*Studies in the Economics of Transportation*. Yale University Press, New Haven CT.

Bertsekas, D.P. and E.M. Gafni (1982).*Projection methods for variational inequalities with application to the traffic assignment problem*. Mathematical Programming Study**17**, 139–159.

Bureau of Public Roads (1964).*Traffic Assignment Manual*. U.S. Department of Commerce, Urban Planning Division, Washington, DC.

Dafermos, S.C. (1980).*Traffic assignment and variational inequalities*. Transportation Science**14** (1), 42–54.

Dafermos, S.C. (1982).*Relaxation algorithms for the general asymmetric traffic equilibrium problem*. Transportation Science**16** (2), 231–240.

Dafermos, S.C. (1983).*An iterative scheme for variational inequalities*. Mathematical Programming**26** (1), 40–47.

Deo, N. and C. Pang (1984).*Shortest-path algorithms: taxonomy and annotation*. Networks Vol**14**, 275–323.

Fisk, C. and S. Nguyen (1982).*Solution algorithms for network equilibrium models with asymmetric user costs*. Transp. Sci.**16** (3), 361–381.

Florian, M. and H. Spiess (1982).*The convergence of diagonalization algorithms for asymmetric network equilibrium problems*. Trans. Res.**16B** (6), 447–483.

Florian, M. (1986).*Nonlinear Cost Network Models in Transportation Analysis*. Mathematical Programming Study**26**, 167–196.

Frank, M. and P. Wolfe (1956).*An algorithm for quadratic programming*. Naval Research Logistics Quarterly**3**, 95–110.

Gallo, G. and S. Pallotino (1984).*Shortest Path Methods in Transportation Models*. In Transportation Planning Models (Edited by M. Florian), 227–256. Elsevier, New York.

Gill, P.E., W. Murray and M. Wright (1981). Practical Optimization. Academic Press.

Harker, P. and J. Pang (1990).

*Finite-dimensional variational inequality and linear complementary problems: a survey of theory, algorithms and applications*. Mathematical Programming

**48**, 161–220.

CrossRefHearn, D.W. (1982).

*The gap function of a convex program*. Oper. Res. Lett.

**1**, 67–71.

CrossRefHohenbalken, B. (1977).

*Simplicial Decomposition in Nonlinear Programming algorithms*. Mathematical Programming

**13**, 49–68.

CrossRefHolloway, C.A. (1974).

*An extension of the Frank and Wolfe method of feasible directions*. Mathematical Programming,

**6**, 14–27.

CrossRefKinderlehrer, D. and G. Stampacchia (1980).*An Introduction to Variational Inequalities and Their Applications*. Academic, New York.

Knuth, D.E. (1973).*The Art of Computer Programming*. Addison-Wesley.

Larsson, T. and M. Patriksson (1992).

*A dual scheme for traffic assignment problems*. Transportation Science

**26**, 4–17.

CrossRefLawphongpanich, S. and D.W. Hearn (1984).

*Simplicial decomposition of the asymmetric traffic assignment problem*. Transp. Res

**18B**, 123–133.

CrossRefLuenberger, D.G. (1974).*Introduction to Linear and Nonlinear Programming*. Addison-Wesley, Reading, MA.

Magnanti, T.L. (1984).*Models and Algorithms for Predicting Urban Traffic Equilibria*. In Transportation Planning Models (Edited by M. Florian), 153–186, Elsevier, New York.

Marcotte, P. and J.P. Dussault (1987).

*A note on a globally convergent Newton method for solving monotone variational inequalities*. Operations Research Letters

**6**, No 1, 35–42.

CrossRefMarcotte P. and J. Guélat (1988).*Adaptation of a modified Newton method for solving the asymmetric traffic equilibrium problem*. Transportation Science,**22**, 112–124.

Montero L. (1992).*A Simplicial Decomposition Approach for Solving the Variational Inequality Formulation of the General Traffic Assignment Problem for Large Scale Networks*. Ph.D. Thesis supervised by Professor Jaume Barceló, Politechnical University of Catalunya in Barcelona (Spain).

Nguyen, S. and C. Depuis (1984).*An efficient method for computing traffic equilibria in network with asymmetric transportation costs*. Transp.

Pang, J.S. and D. Chan (1982).

*Iterative Methods for variational and complementary problems*. Mathematical Programming

**24** (3), 284–313.

CrossRefPang, J.S. and C.S. Yu (1984).*Linearized simplicial decomposition methods for computing traffic equilibria on networks*. Networks**14** (3), 427–438.

Patriksson, M. (1990).*The traffic assignment problem. Theory and Algorithms* Report LiTH-MAT-R-90-29, Department of Mathematics, Institute of Technology, Linköping University, Sweden.

Sheffi, Y. (1985). Urban transportation networks. Equilibrium analysis with mathematical methods. Prentice Hall, Englewood Cliffs, New Jersey.

Smith, M.J. (1979b).

*Existence, uniqueness and stability of traffic equilibria*. Transp. Res.

**13B** (4), 295–304.

CrossRefSmith, M.J. (1981a).

*The existence of an equilibrium solution, to the traffic assignment problem when there are junction interactions*. Transportation Research B,

**15B** No 6, 443–451.

CrossRefSmith, M.J. (1981b).

*Properties of a traffic control policy which ensure the existence of a traffic equilibrium consistent with the policy*. Transportation Research B,

**15B** No 6, 453–462.

CrossRefSmith, M.J. (1983a).

*The existence and calculation of traffic equilibria*. Transp. Res.

**17B** (4), 291–303.

CrossRefSmith, M.J. (1983b).

*Art algorithm for solving asymmetric equilibrium problems with continuous cost-flow function*. Transp. Res.

**17B** (5), 365–372.

CrossRefSmith, M.J. (1985).

*Traffic Signals in assignment*. Transportation Research B,

**19B**, No 2, 155–160.

CrossRefSmith, M.J., and M. Ghali (1989).*The interaction between traffic flow and traffic control in congested urban networks*. Paper for the Italian/USA Traffic Conference, Naples.

Wardrop, J.G. (1952).*Some theoretical aspects of road traffic research*. Proc. Inst. Civ. Eng. Part II,**1** (2), 325–378.