manuscripta mathematica

, Volume 71, Issue 1, pp 67–81

M-harmonic Besovp-spaces and Hankel operators in the Bergman space on the ball in ℂn

  • Kyong T. Hahn
  • E. H. Youssfi
Article

DOI: 10.1007/BF02568394

Cite this article as:
Hahn, K.T. & Youssfi, E.H. Manuscripta Math (1991) 71: 67. doi:10.1007/BF02568394

Abstract

In this paper, we characterize the Hardy class ofM-harmonic functions on the unit ballB in ℂn in terms of the Berezin transform. We define and study the Besovp-spaces ofM-harmonic functions. For anM-harmonic symbolf, we give various criteria for the Hankel operatorsHf andHf to be bounded, compact or in the Schatten-von-Neumann classSp. These criteria establish a close relationship among Besovp-spaces, Berezin transform, the invariant Laplacian, and Hankel operators on the unit ballB.

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Kyong T. Hahn
    • 1
  • E. H. Youssfi
    • 1
  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity Park