, Volume 86, Issue 1, pp 311-335

On real forms of JB*-triples

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We introduce real JB*-triples as real forms of (complex) JB*-triples and give an algebraic characterization of surjective linear isometries between them. As main result we show: A bijective (not necessarily continuous) linear mapping between two real JB*-triples is an isometry if and only if it commutes with the cube mappinga→a 3={aaa}. This generalizes a result of Dang for complex JB*-triples. We also associate to every tripotent (i.e. fixed point of the cube mapping) and hence in particular to every extreme point of the unit ball in a real JB*-triple numerical invariants that are respected by surjective linear isometries.