Commentarii Mathematici Helvetici

, Volume 71, Issue 1, pp 98–121

Jacquet functors and unrefined minimal K-types

Authors

  • Allen Moy
    • Department of MathematicsUniversity of Michigan
  • Gopal Prasad
    • Department of MathematicsUniversity of Michigan
Article

DOI: 10.1007/BF02566411

Cite this article as:
Moy, A. & Prasad, G. Commentarii Mathematici Helvetici (1996) 71: 98. doi:10.1007/BF02566411

Abstract

The notion of an unrefined minimal K-type is extended to an arbitrary reductive group over a non archimedean local field. This allows one to define the depth of a representation. The relationship between unrefined minimal K-types and the functors of Jacquet is determined. Analogues of fundamental results of Borel are proved for representations of depth zero.

Copyright information

© Birkhäuser Verlag 1996