, Volume 162, Issue 2-3, pp 99-107

Ultrastructure of feeding tubes formed in giant-cells induced in plants by the root-knot nematodeMeloidogyne incognita

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

The plant pathogenic nematodeMeloidogyne incognita forms conspicuous tubular structures referred to as feeding tubes in special food cells, called giant-cells, induced and maintained in susceptible host roots by feeding nematodes. Feeding tubes are formed by nematode secretions injected into giant-cells via a stylet and apparently function to facilitate withdrawal of soluble assimilates by the parasite. In giant-cells in roots of the four host species examined in this study, feeding tube morphology was identical. Tubes were straight to slightly curved structures just less than 1 μm wide and up to slightly more than 70 μm long. At the ultrastructural level, each tube consisted of a 190–290 nm thick, electron-dense, crystalline wall surrounding an electron-transparent lumen with a diameter of 340–510 nm. The distal end of the tube was sealed with wall material. Older tubes were found free in the host cytoplasm while the proximal ends of young tubes were attached to the host cell wall via short wall ingrowths through which the nematode's stylet was inserted. An elaborate membrane system was associated with the feeding tubes and was most extensive around newly formed tubes. Contiguous to the feeding tube wall, this membrane system consisted of strands of smooth endoplasmic reticulum while rough endoplasmic reticulum predominated toward the outer margin of the membrane system. Vacuoles and mitochondria were excluded from a zone of cytoplasm surrounding feeding tubes. This zone of exclusion, as well as the membrane system noted above, tended to be less pronounced or absent around older tubes no longer being used by the nematode.