[A] R. B. Ash,*Real Analysis and Probability*, Academic Press, New York, 1972.

[BH] E. Baum and D. Haussler, What size net gives valid generalization?,*Neural Comput*. (to appear).

[B] B. Bavarian (ed.), Special section on neural networks for systems and control,*IEEE Control Systems Mag.*,**8** (April 1988), 3–31.

[BEHW] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension,*Proceedings of the 18th Annual ACM Symposium on Theory of Computing*, Berkeley, CA, 1986, pp. 273–282.

[BST] L. Brown, B. Schreiber, and B. A. Taylor, Spectral synthesis and the Pompeiu problem,

*Ann. Inst. Fourier (Grenoble)*,

**23** (1973), 125–154.

MathSciNet[CD] S. M. Carroll and B. W. Dickinson, Construction of neural nets using the Radon transform, preprint, 1989.

[C] G. Cybenko, Continuous Valued Neural Networks with Two Hidden Layers are Sufficient, Technical Report, Department of Computer Science, Tufts University, 1988.

[DS] P. Diaconis and M. Shahshahani, On nonlinear functions of linear combinations,

*SIAM J. Sci. Statist. Comput.*,

**5** (1984), 175–191.

CrossRefMathSciNetMATH[F] K. Funahashi, On the approximate realization of continuous mappings by neural networks,*Neural Networks* (to appear).

[G] L. J. Griffiths (ed.), Special section on neural networks,*IEEE Trans. Acoust. Speech Signal Process.*,**36** (1988), 1107–1190.

[HSW] K. Hornik, M. Stinchcombe, and H. White, Multi-layer feedforward networks are universal approximators, preprint, 1988.

[HL1] W. Y. Huang and R. P. Lippmann, Comparisons Between Neural Net and Conventional Classifiers, Technical Report, Lincoln Laboratory, MIT, 1987.

[HL2] W. Y. Huang and R.P. Lippmann, Neural Net and Traditional Classifiers, Technical Report, Lincoln Laboratory, MIT, 1987.

[H] P. J. Huber, Projection pursuit,

*Ann. Statist.*,

**13** (1985), 435–475.

MathSciNetMATH[J] L. K. Jones, Constructive approximations for neural networks by sigmoidal functions, Technical Report Series, No. 7, Department of Mathematics, University of Lowell, 1988.

[K] A. N. Kolmogorov, On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition,

*Dokl. Akad. Nauk. SSSR*,

**114** (1957), 953–956.

MathSciNetMATH[LF] A. Lapedes and R. Farber, Nonlinear Signal Processing Using Neural Networks: Prediction and System Modeling, Technical Report, Theoretical Division, Los Alamos National Laboratory, 1987.

[L1] R. P. Lippmann, An introduction to computing with neural nets,

*IEEE ASSP Mag.*,

**4** (April 1987), 4–22.

CrossRef[L2] G. G. Lorentz, The 13th problem of Hilbert, in*Mathematical Developments Arising from Hilbert’s Problems* (F. Browder, ed.), vol. 2, pp. 419–430, American Mathematical Society, Providence, RI, 1976.

[MSJ] J. Makhoul, R. Schwartz, and A. El-Jaroudi, Classification capabilities of two-layer neural nets.*Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing*, Glasgow, 1989 (to appear).

[MP] M. Minsky and S. Papert,

*Perceptrons*, MIT Press, Cambridge, MA, 1969.

MATH[N] N. J. Nilsson,

*Learning Machines*, McGraw-Hill, New York, 1965.

MATH[P] G. Palm, On representation and approximation of nonlinear systems, Part II: Discrete systems,

*Biol. Cybernet.*,

**34** (1979), 49–52.

CrossRefMathSciNetMATH[R1] W. Rudin,

*Real and Complex Analysis*, McGraw-Hill, New York, 1966.

MATH[R2] W. Rudin,

*Functional Analysis*, McGraw-Hill, New York, 1973.

MATH[RHM] D. E. Rumelhart, G. E. Hinton, and J. L. McClelland, A general framework for parallel distributed processing, in*Parallel Distributed Processing: Explorations in the Microstructure of Cognition* (D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, eds.), vol. 1, pp. 45–76, MIT Press, Cambridge, MA, 1986.

[V] L. G. Valiant, A theory of the learnable,

*Comm. ACM*,

**27** (1984), 1134–1142.

CrossRefMATH[WL] A Wieland and R. Leighton, Geometric analysis of neural network capabilities,*Proceedings of IEEE First International Conference on Neural Networks*, San Diego, CA, pp. III-385–III-392, 1987.