Skip to main content
Log in

On a possibility to find experimental evidence for the many-worlds interpretation of quantum mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The many-worlds interpretation of quantum mechanics predicts the formation of distinct parallel worlds as a result, of a quantum mechanical measurement. Communication among these parallel worlds would experimentally rule out alternatives to this interpretation. A possible procedure for “interworld” exchange of information and energy, using only state of the art quantum optical equipement, is described. A single ion is isolated from its environment in an ion trap. Then a quantum mechanical measurement with two discrete outcomes is performed on another system, resulting in the formation of two parallel worlds. Depending on the outcome of this measurement the ion is excited from only one of the parallel worlds before the ion decoheres through its interaction with the environment. A detection of this excitation in the other parallel world is direct evidence for the many-worlds interpretation. This method could have important practical applications in physics and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Omnès,Rev. Mod. Phys. 64, 339 (1992), is an exhaustive review of the field. W. H. Zurek,Phys. Today 44(10), 36 (1991), is a pedagocical introduction; see also letters about this article and Zurek’s reply in:Phys. Today 46(4), 13 (1993).

    Article  ADS  Google Scholar 

  2. W. Heisenberg,The Physicists Conception of Nature (Hutchinson, London, 1958).

    Google Scholar 

  3. L. E. Ballentine,Rev. Mod. Phys. 42, 358 (1970).

    Article  ADS  MATH  Google Scholar 

  4. N. Bohr,Atomic Theory and the Description of Human Knowledge (Cambridge University Press, Cambridge, 1934), p. 19.

    Google Scholar 

  5. J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955), Chap. VI.

    MATH  Google Scholar 

  6. W. H. Zurek,Prog. Theor. Phys. 89, 281 (1993), also available in xxx.lanl.gov e-Print archive under gr-qc 9402011, is an exhaustive review on the subject of decoherence; I followed Zurek’s standpoint in the present paper.

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Omnès,Ann. Phys. (N.Y) 201, 354 (1990) (citation from p. 361).

    Article  ADS  Google Scholar 

  8. P. R. Holland and J. P. Vigier,Found. Phys. 18, 741 (1988). F. J. Belinfante,A Survey of Hidden-Variable Theories (Pergamon, Oxford, 1973).

    Article  ADS  Google Scholar 

  9. A review on the issue EPR correlations is: D. N. Mermin,Phys. Today 39(4), 38 (1985). The most recent experiments are: P. R. Rapster, J. G. Rarity, and P. C. M. Owens,Phys. Rev. Lett. 73, 1923 (1994); P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao,Phys. Rev. A. 47, R2427 (1993); T. E. Kiess, Y. H. Shih, A. V. Sergienko, and C. O. Alley,Phys. Rev. Lett. 71, 3893 (1993).

    Google Scholar 

  10. R. T. Jones and E. G. Adelberger,Phys. Rev. Lett. 72, 2675 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. M. Gell-Mann and J. B. Hartle, inProceedings International Symposium Foundations of Quantum Mechanics, S. Kobayashi et al. eds. (The Physical Society of Japan, Tokyo, 1989), p. 321 the remark can be found in the discussion section in response to a question by P. Mittelstaedt.

    Google Scholar 

  12. R. B. Griffiths,Phys. Rev. Lett. 70, 2201 (1993). M. Gell-Mann and J. B. Hartle,Phys. Rev. D 47, 3345 (1993). Exhaustive and pedagogic lectures can be found in: J. B. Hartle, inQuantum Cosmology and Baby Universes, S. Coleman,et al., eds. (World Scientific, Singapore, 1991), p. 67.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. H. Everett III, inThe Many-Worlds Interpretation of Quantum Mechnics, B. S. DeWitt and N. Graham, eds. (Princeton University Press, Princeton, 1973), p. 3. H. Everett III,Rev. Mod. Phys. 29, 454 (1957). Note that the first reference constitutes the original work of Everett. It contains, a clear statement of the incompatibility of his interpretation with the Copenhagen interpetation in the discussion section on pp. 109–119. This opinion appears only in a much weakened form in the journal article.

    Google Scholar 

  14. B. S. DeWitt,Phys. Today 23(9), 30 (1970). B. S. DeWitt, inFondamenti, di Meccanica Quantisitica, B. D’Espagnat, ed. (Academic, New York, 1971), p. 211; here DeWitt uses the expression “many-universe interpretation,” which can give rise to misunderstandings in my opinion.

    Article  Google Scholar 

  15. Occasionally the MWI is interpreted in a way in which the “splitting” requires some new mechanism outside of known physics; see e.g., M. A. B. Whitaker,J. Phys. A 18, 253 (1985). The assumption of such a mechanism leads to various problems with the MWI as discussed in this reference. I hold the view that one is led inevitably (and without further mechanisms) to the MWI if one assumes that the Schrödinger equation is a complete and objective description of reality and takes into account decoherence. A similar view is voiced by Zurek who finds the MWI “unsatisfying”; however, see the discussion section to his article: W.H. Zurek, inConceptual Problems of Quantum Gravity, A. Ashtekar and J. Stachel, eds. (Birkhäuser, Boston, 1991), p. 43.

    Article  ADS  MathSciNet  Google Scholar 

  16. H. D. Zeh,Found. Phys. 3, 109 (1973).

    Article  ADS  Google Scholar 

  17. H. D. Zeh,Phys. Lett. A 172, 189 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Albrecht,Phys. Rev. D 48, 3768 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Deutsch,Int. J. Theor. Phys. 24, 1 (1985).

    Article  MathSciNet  Google Scholar 

  20. J. Clarke et al.,Science 239, 992 (1988).

    Article  ADS  Google Scholar 

  21. H. Dehmelt,Am. J. Phys. 58, 17 (1990).

    Article  ADS  Google Scholar 

  22. W. H. Zurek, S. Habib, and J. P. Paz,Phys. Rev. Lett. 70, 1187 (1993).

    Article  ADS  Google Scholar 

  23. M. O. Scully and H. Walther,Phys. Rev. A 39, 5229 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  24. R. H. Dicke,Am. J. Phys. 49, 925 (1981). R. H. Dicke,Found. Phys.,16, 107 (1986).

    Article  ADS  Google Scholar 

  25. M. Tegmark,Found. Phys. Lett. 6, 571 (1993).

    Article  Google Scholar 

  26. R. A. Harris and L. Stodolsky,Phys. Lett. B 116, 464 (1982).

    Article  ADS  Google Scholar 

  27. L. Stodolsky, inQuantum Coherence, J. S. Anandan, ed. (World Scientific, Singapore, 1990), p. 320.

    Google Scholar 

  28. G. Raffelt, G. Sigl and L. Stodolsky,Phys. Rev. Lett. 70, 2363 (1993).

    Article  ADS  Google Scholar 

  29. E. Joos and H. D. Zeh,Z. Phys. B. 59, 223 (1985).

    Article  ADS  Google Scholar 

  30. L. I. Schiff,Quantum Mechanics (McGraw-Hill, Singapore, 1985), 3rd edn. Chap. 14,

    Google Scholar 

  31. A. O. Caldeira and A. J. Legget,Phys. Rev. A 31, 1059 (1985).

    Article  ADS  Google Scholar 

  32. W. G. Unruh and W. H. Zurek,Phys. Rev. D 40, 1071 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  33. D. N. Page and C. D. Geilker,Phys. Rev. Lett. 47, 979 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  34. W. M. Itano et al.,Phys. Rev. A 47, 3354 (1993).

    Article  Google Scholar 

  35. M. Sargent, III, M. O. Scully, and W. E. Lamb,Laser Physics (Addison-Wesley, Reading, Massachusetts, 1974), p. 27.

    Google Scholar 

  36. R. B. Bernstein,J. Chem. Phys. 34, 361 (1961).

    Article  ADS  Google Scholar 

  37. F. Diedrich and H. Walther,Phys. Rev. Lett. 58, 203 (1987).

    Article  ADS  Google Scholar 

  38. S. L. Gilbert et al.,Phys. Rev. Lett. 60, 2022 (1988),

    Article  ADS  Google Scholar 

  39. E. L. Hill,Rev. Mod. Phys. 23, 253 (1951).

    Article  ADS  MATH  Google Scholar 

  40. A. C. Elitzur and L. Vaidmann,Found. Phys. 23, 987 (1993).

    Article  ADS  Google Scholar 

  41. J. Polchinski,Phys. Rev. Lett. 66, 397 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. M. Gell-Mann and J. B. Hartle, “Equivalent sets of histories and multiple quasiclassical domains,” preprint, University of California at Santa Barbara UCSBTH-94-09 (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaga, R. On a possibility to find experimental evidence for the many-worlds interpretation of quantum mechanics. Found Phys 27, 559–577 (1997). https://doi.org/10.1007/BF02550677

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02550677

Keywords

Navigation