, Volume 15, Issue 9, pp 651-660

Comparative studies on composition of cardiac phospholipids in rats fed different vegetable oils

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Male Sprague-Dawley rats were fed diets for 1 or 16 weeks, containing 20% by weight vegetable oils differing widely in their oleic, linoleic and linolenic acid content. No significant changes were observed in the level of the cardiac lipid classes. The fatty acid composition of the 2 major phospholipids, phosphatidylcholine and phosphatidylethanolamine, showed a remarkable similarity between diets in the concentration of total saturated, C22 polyunsaturated and arachidonic acids. Monounsaturated acids were incorporated depending on their dietary concentration, but the increases were moderate. Dietary linolenic acid rapidly substituted C22 polyunsaturated fatty acids of the linoleic acid family (n−6) with those from the linolenic acid family (n−3). The results suggest that dietary linolenic acid of less than 15% does not inhibit the conversion of linoleic to arachidonic acid but the subsequent conversion of arachidonic acid to the C22 polyunsaturates was greatly reduced. Significant amounts of dietary monounsaturated fatty acids were incorporated into cardiac cardiolipin accompanied by increases in polyunsaturated fatty acids, apparently to maintain an average of 2 double bonds/molecule. The cardiac sphingomyelins also accumulated monounsaturated fatty acids depending on the dietary concentration. It is quite evident from the results of this study that the incorporation of oleic acid and the substitution of linolenic for linoleic acid-derived C22 polyunsaturated fatty acids into cardiac phospholipids was related to the dietary concentration of these fatty acids and was not peculiar to any specific oil. Even though it is impossible to estimate the effect of such changes in cardiac phospholipids on membrane structure and function, results are discussed which suggest that the resultant membrane in the Sprague-Dawley male rat is more fragile, leading to greater cellular breakdown and focal necrosis.

Contribution No. 914 from the Animal Research Institute.