Skip to main content
Log in

Aktivierung axoaxonischer Synapsen durch Salven in afferenten C-Fasern: Manfred Zimmermanns Falsifizierung der Gate-Control-Theorie

Activation of axo-axonic synapses by serial impulses in afferent C fibres: the gate-control theory disproved by Manfred Zimmermann

Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Die Gate-Control-Theorie (Kontrollschrankentheorie) von Melzack und Wall [8] postulierte, daß die Aktivierung der nach zentral projizierenden P-Zellen (gemeint sind v.a. die Zellen desTractus spinothalamicus bzw. diesem vorgeschaltete Interneurone) über ein kritisches Maß hinaus die zentralen Schmerzsysteme erregt, und daß die SG-(Substantia gelatinosa-)Zellen als “Kontrollschranken” den erregenden Zufluß zu den P-Zellen reduzieren, bevor dieser die P-Zellen erreicht. Da die P-Zellen monosynaptisch mit den primär afferenten Fasern verbunden sind, kann diese Reduktion, und dies ist der kritische Punkt der Theorie, nur über eine präsynaptische Hemmung erfolgen. Die Theorie forderte also, daß die Aktivierung dicker (d.h. im wesentlichen niederschwelliger) Afferenzen zu einer präsynaptischen Hemmung afferenter Fasern führt, wobei diese depolarisiert werden, während die Aktivierung dünner (v.a. nozizeptiver) Afferenzen diese Depolarisation abschaltet und damit den Weg zu den zentralen Schmerzsystemen öffnet. Diese Theorie hatte von Anfang an ein zwar wenig tragfähiges, aber experimentell testbares Fundament. Dieser Beitrag schildert die Falsifizierung der Gate-Control-Theorie durch eine Serie eleganter Experimente, v.a. durch manfred Zimmermann, samt den daraus zu ziehenden Konsequenzen, die von klinischer Seite bis in die Gegenwart nicht ausreichend beachtet werden.

Abstract

The gate-control theory of pain, as originally proposed by Melzack and Wall [8], is nothing but a hypothesis concerning the spinal processing of non-noxious and noxious afferent information. Its basic tenant is that the P cells (projecting neurons) convey noxious information to supraspinal pain systems only after a critical threshold of excitation has been passed, and that access to the P cells is controlled by the SG cells (cells of the substantia gelatinosa Rolandi) or, in other words, the SG cells act as the gate. Since the primary afferent fibres have monosynaptic connections with the P cells the gate can only operate—and this is the critical point of the whole hypothesis—via presynaptic inhibition exerted by axoaxonic contacts on these afferents (Fig. 1). The SG cells are excited by thick (low-threshold) afferent fibres, whereas input from fine (noxious) afferents has inhibitory effects. Low-threshold afferent input, therefore, produces little activation of P cells, since the collateral activation of the SG cells leads to vigorous activation of the presynaptic inhibitory gate (Fig. 1 a). But as soon as noxious input via fine afferent units inhibits the SG cells the gate will be opened and the P cells activated (Fig. 1b). Presynaptic inhibition of primary afferent fibres is accompanied by primary afferent depolarization (PAD), which can be recorded from dorsal root filaments as a negative potential change, the dorsal root potential or DRP (Fig. 4). Removal of tonic presynaptic inhibition should involve a primary afferent hyperpolarization (PAH), and this should evoke a positive DRP. Mendell and Wall (1964) claimed to have recorded such positive DRP following preferential or exclusive activation of fine afferent units (group III [A] and IV [C] fibres). This exclusive and therefore crucial experimental support of the gate-control theory has not been confirmed in other laboratories. In particular, as shown in this paper, a series of very elegant and convincing experiments by Manfred Zimmermann gave unequivocal evidence that afferent input via fine afferents produces only PAD, under a variety of experimental conditions. A number of other experimental approaches have also so far failed to demonstrate any PAH following afferent input via fine somatic afferent fibres. Thus, the gatecontrol theory has been disproved by these experiments. As a consequence, Melzack and Wall [9] have now modified their hypothesis considerably. Its present formulation is not much more than a very general statement to the effect that all kinds of afferent input, including noxious input, is under the modulating influence of various mechanisms operating both at the spinal level and from supraspinal (descending) structures. No implications for therapy can be derived directly from such an undefined, in many ways trivial, assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Dawson GD, Merrill EG, Wall PD (1970) Dorsal root potentials produced by stimulation of fine afferents. Science 167:1385

    Article  Google Scholar 

  2. Eccles JC, Kostyuk PG, Schmidt RF (1962) Presynaptic inhibition of the central actions of flexor reflex afferents. J Physiol 161:258

    PubMed  CAS  Google Scholar 

  3. Eccles JC, Schmidt RF, Willis WD (1963) Depolarization of the central terminals of cutaneous afferent fibres. J Neurophysiol 26:646

    Google Scholar 

  4. Franz DN, Iggo A (1968) Dorsal root potentials and ventral root reflexes evoked by non-myelinated fibers. Science 162:1140

    Article  PubMed  CAS  Google Scholar 

  5. Jänig W, Schmidt RF, Zimmermann M (1967) Presynaptic depolarization during activation of tonic mechanoreceptors. Brain Res 5:514

    Article  PubMed  Google Scholar 

  6. Jänig W, Schmidt RF, Zimmermann M (1968a) Single unit responses and the total afferent outflow from the cat’s food pat upon mechanical stimulation. Exp Brain Res 6:100

    PubMed  Google Scholar 

  7. Jänig W, Schmidt RF, Zimmermann M (1968b) Two specific feedback pathways to the central afferent terminals of phasic and tonic mechanoreceptors. Exp Brain Res 6:116

    PubMed  Google Scholar 

  8. Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150:971

    Article  PubMed  CAS  Google Scholar 

  9. Melzack R, Wall PD (1983) The challenge of pain. Basic, New York

    Google Scholar 

  10. Mendell LM, Wall PD (1964) Presynaptic hyperpolarization: a role for fine afferent fibers. J Physiol 172:274

    PubMed  CAS  Google Scholar 

  11. Nathan PW (1976) The gate-control-theory of pain. A critical review. Brain 99:123

    PubMed  CAS  Google Scholar 

  12. Quevedo J, Equibar JR, Jiménez I, Schmidt RF, Rudomin P (in press) Primary afferent depolarization of muscle afferents elicited by stimulation of joint afferents in cats with intact neuraxis and during reversible spinalization. J Neurophysiol

  13. Schaible HG, Grubb BD (in press) Afferent and spinal mechanisms of joint pain. Pain

  14. Schmidt RF (1971) Presynaptic inhibition in the vertebrate central nervous system. Erg Physiol 63:20

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt RF (1972) Die Gate-Control-Theorie des Schmerzes: eine unwahrscheinliche Hypothese. In: Janzen R et al. (Hrsg) Schmerz. Thieme, Stuttgart, S 133

    Google Scholar 

  16. Schmidt RF (1973) Control of the access of afferent activity to somatosensory pathways. In: Iggo A (ed) Somatosensory system. Handbook of sensory physiology, vol 2. Springer, Berlin Heidelberg New York, p 151

    Google Scholar 

  17. Schmidt RF (1985) Neurobiologische Aspekte der Akupunktur und ihre Konsequenzen. Dtsch Ärztebl 82 (Heft 7):413. Schlußwort: Dtsch Ärztebl 82 (Heft 34):2380

    Google Scholar 

  18. Schmidt RF (Hrsg) (1993) Neuro- und Sinnesphysiologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  19. Schmidt RF, Thews G (Hrsg) (1993) Physiologie des Menschen, 25. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Schmidt RF, Willis WD (1963) Depolarization of central terminals of afferent fibres in the cervical spinal cord of the cat. J Neurophysiol 26:44

    PubMed  CAS  Google Scholar 

  21. Sweet WH (1981) Some current problems in pain research and therapy (including needle puncture, “acupuncture”). Pain 10:297

    Article  PubMed  CAS  Google Scholar 

  22. Vyklický L, Rudomin P, Zajac FE, Burke RE (1969) Primary afferent depolarization evoked by a painful stimulus. Science 165:184

    Article  PubMed  Google Scholar 

  23. Wall PD (1964) Presynaptic control of impulses at the first central synapse in the cutaneous pathway. Prog Brain Res 12:92

    Article  PubMed  CAS  Google Scholar 

  24. Wall PD (1978) The gate control theory of pain mechanisms. A re-examination and re-statement. Brain 101:1

    PubMed  CAS  Google Scholar 

  25. Zimmermann M (1968a) Dorsal root potentials after C-fiber stimulation. Science 160:896

    Article  PubMed  CAS  Google Scholar 

  26. Zimmermann M (1968b) Selective activation of C-fibers. Pflügers Arch 301:329

    Article  CAS  Google Scholar 

  27. Zimmermann M (1972) Contribution by thin myelinated (Group III) cutaneous afferent fibres to central nervous activity as revealed by selective stimulation. J Physiol 224:33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Professor Dr. M. Zimmermann zum 60. Geburtstag gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R.F. Aktivierung axoaxonischer Synapsen durch Salven in afferenten C-Fasern: Manfred Zimmermanns Falsifizierung der Gate-Control-Theorie. Schmerz 7, 262–267 (1993). https://doi.org/10.1007/BF02529862

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529862

Schlüsselwörter

Key words

Navigation