[1]

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and hardness of approximation problems,*Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science*, 1992, pp. 14–23.

[2]

S. Arora and S. Safra, Approximating clique is NP-complete,*Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science*, 1992, pp. 2–13.

[3]

M. Bellare, Interactive Proofs and Approximation, IBM Research Report RC 17969, 1992.

[4]

P. Berman and G. Schnitger, On the complexity of approximating the independent set problem,

*Information and Computation*,

**96** (1992), 77–94.

MATHMathSciNetCrossRefGoogle Scholar[5]

A. Blum, Some tools for approximate 3-coloring,*Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science*, 1990, pp. 554–562.

[6]

B. Bollobas,

*Random Graphs*, Academic Press, New York, 1985.

MATHGoogle Scholar[7]

R. B. Boppana and M. M. Halldorsson, Approximating maximum independent sets by excluding subgraphs,

*Proceedings of the 2nd Scandanavian Workshop on Algorithmic Theory*, Lecture Notes in Computer Science, No. 447, Springer-Verlag, Berlin, 1990, pp. 13–25.

Google Scholar[8]

A. Broder, A. M. Frieze, and E. Shamir, Finding hidden Hamiltonian cycles,*Proceedings of the 23rd Annual ACM Symposium on Theory of Computing*, 1991, pp. 182–189.

[9]

V. Chvatal, Tough graphs and Hamiltonian circuits,

*Discrete Mathematics*,

**5** (1973), 215–228.

MATHMathSciNetCrossRefGoogle Scholar[10]

V. Chvatal, Edmonds polytopes and weakly Hamiltonian graphs,

*Mathematical Programming*,

**5** (1973), 29–40.

MATHMathSciNetCrossRefGoogle Scholar[11]

V. Chvatal, Hamiltonian cycles, in

*The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization* (ed. E. L. Lawler

*et al.*), Wiley, New York, 1985, pp. 402–430.

Google Scholar[12]

R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in

*Complexity of Computer Computations* (ed. R. Karp), American Mathematical Society, Providence, RI, 1974.

Google Scholar[13]

U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Approximating clique is almost NP-complete,*Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer Science*, 1991, pp. 2–12.

[14]

W. F. de la Vega and G. S. Lueker, Bin packing can be solved within 1+ε in linear time,

*Combinatorica*,

**1** (1981), 349–355.

MATHMathSciNetGoogle Scholar[15]

M. Furer and B. Raghavachari, Approximating the minimum degree spanning tree to within one from the optimal degree,*Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms*, 1992, pp. 317–324.

[16]

M. R. Garey and D. S. Johnson,

*Computers and Intractability: A Guide to the Theory of NP-Completeness*, Freeman, San Francisco, CA, 1979.

MATHGoogle Scholar[17]

D. S. Johnson, The Tale of the Second Prover, The NP-Completeness Column: An Ongoing Guide,

*Journal of Algorithms*,

**13** (1992), 502–524.

MATHMathSciNetCrossRefGoogle Scholar[18]

D. R. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by semidefinite programming,*Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science*, 1994, pp. 2–13.

[19]

N. Karmakar and R. M. Karp, An efficient approximation scheme for the one-dimensional bin packing problem,*Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science*, 1982, pp. 312–320.

[20]

C. Lund and M. Yannakakis, On the hardness of approximating minimization problems,*Proceedings of the 25th Annual ACM Symposium on Theory of Computing*, 1993, pp. 286–293.

[21]

B. Monien, How to find long paths efficiently,

*Annals of Discrete Mathematics*,

**25** (1984), 239–254.

MathSciNetGoogle Scholar[22]

R. Motwani, Lecture Notes on Approximation Algorithms, Technical Report No. STAN-CS-92-1435, Department of Computer Science, Stanford University, 1992.

[23]

C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes,*Proceedings of the 20th Annual ACM Symposium on Theory of Computing*, 1988, pp. 229–234.

[24]

C. H. Papadimitriou and M. Yannakakis, The traveling salesman problem with distances one and two,

*Mathematics of Operations Research*,

**18** (1993), 1–11.

MATHMathSciNetCrossRefGoogle Scholar[25]

A. Subramanian, Personal communication, 1994.