Skip to main content
Log in

The chemistry and antioxidant properties of tocopherols and tocotrienols

  • Review
  • Published:
Lipids

Abstract

This article is a review of the fundamental chemistry of the tocopherols and tocotrienols relevant to their antioxidant action. Despite the general agreement that α-tocopherol is the most efficient antioxidant and vitamin E homologuein vivo, there was always a considerable discrepancy in its “absolute” and “relative” antioxidant effectivenessin vitro, especially when compared to γ-tocopherol. Many chemical, physical, biochemical, physicochemical, and other factors seem responsible for the observed discrepancy between the relative antioxidant potencies of the tocopherolsin vivo andin vitro. This paper aims at highlighting some possible reasons for the observed differences between the tocopherols (α-, β-, γ-, and δ-) in relation to their interactions with the important chemical species involved in lipid peroxidation, specifically trace metal ions, singlet oxygen, nitrogen oxides, and antioxidant synergists. Although literature reports related to the chemistry of the tocotrienols are quite meager, they also were included in the discussion in virtue of their structural and functional resemblance to the tocopherols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ESR:

electron spin resonance

LDL:

low density lipoprotein

NO:

nitric oxide

PUFA:

polyunsaturated fatty acids

References

  1. Schultz, H.W., Day, E.A., and Sinnhuber, R.D. (eds.) (1962)Symposium on Foods: Lipids and Their Oxidation, AVI Publishing Co., Westport.

    Google Scholar 

  2. Korycha-Dahl, M., and Richardson, T. (1978) Activated Oxygen Species and Oxidation of Food Constituents,CRC Crit. Rev. Food Sci. Nut. 10, 209–241.

    Google Scholar 

  3. Simic, M.G. (1981) Free Radical Mechanisms in Autoxidation Processes,J. Chem. Educ. 58, 125–131.

    CAS  Google Scholar 

  4. Allen, J.C., and Hamilton, R.J. (1983)Rancidity in Foods, Applied Science Publishers, Barking.

    Google Scholar 

  5. Frankel, E.N. (1984) Chemistry of Free Radical and Singlet Oxidation of Lipids,Prog. Lipid Res. 23, 197–321.

    Article  PubMed  CAS  Google Scholar 

  6. Min, D.B. and Smouse, T.H. (1985)Flavor Chemistry of Fats and Oils, American Oil Chemists' Society, Champaign.

    Google Scholar 

  7. Aruoma, O.I. (1991) Prooxidant Properties: An Important Consideration for Food Additives and/or Nutrient Components?, inFree Radicals and Food Additives (O.I. Aruoma, and B. Halliwell, eds.), pp. 173–194, Taylor & Francis, London.

    Google Scholar 

  8. Freeman, B.A., and Crapo, J.D. (1982). Biology of Disease, Free Radicals and Tissue Injury,Laboratory Investigation 47, 412–426.

    PubMed  CAS  Google Scholar 

  9. Cross, C.E. (1987) Oxygen Radicals and Human Disease,Ann. Internal Med. 107, 526–545.

    CAS  Google Scholar 

  10. Halliwell, B., and Gutteridge, J.M.C. (1989)Free Radicals in Biology and Medicine, Oxford University Press, Oxford.

    Google Scholar 

  11. Ingold, K.U. (1962) Metal Catalysis, inSymposium on Foods: Lipids and Their Oxidation (Schultz, H.W., Day, E.A., and Sinnhuber, R.O., eds.), pp. 93–121, AVI Publishing Company, Westport.

    Google Scholar 

  12. Karel, M. (1980) Lipid Oxidation: Secondary Reactions and Water Activity of Foods, inAutoxidation in Food and Biological Systems (Simic, E.M., and Karel, M., eds.), pp. 191–206, Plenum Press, New York.

    Google Scholar 

  13. Simic, M.G., and Karel, M. (1980)Autoxidation in Food and Biological Systems, Plenum Press, New York.

    Google Scholar 

  14. Kanner, J., German J.B., and Kinsella, J.E. (1987) Initiation of Lipid Peroxidation in Biological Systems,CRC Crit. Rev. Food Sci. Nutr. 25, 317–364.

    CAS  Google Scholar 

  15. Chan, H.W.-S. (1987) The Mechanism of Autoxidation, inAutoxidation of Unsaturated Lipids (Chan, H.W.S., ed.), pp. 1–16, Academic Press, London.

    Google Scholar 

  16. McCay, P.B., Fong, K.L., Lai, E.K., and King, M.M. (1978) Possible Role of Vitamin E as a Free Radical Scavenger and Singlet Oxygen Quencher in Biological Systems Which Initiate Radical-Mediated Reactions, inTocopherol, Oxygen and Biomembranes (deSuve, C., and Hayaishi, O., eds.), Elsevier/North Holland Biochemical Press, Amesterdam.

    Google Scholar 

  17. Oski, F.A. (1980) Vitamin E—A Radical Defense,New Engl. J. Med. 303, 454–455.

    Article  PubMed  CAS  Google Scholar 

  18. Machlin, L.J. (1980)Vitamin E: A Comprehensive Treastise, Marcel Dekker, New York.

    Google Scholar 

  19. Machlin, L.J. (1984) Vitamin E, inHandbook of Vitamins: Nutritional Biochemical & Clinical Aspects (Machlin, L.J., ed.), 99–145, Marcel Dekker, New York and Basel.

    Google Scholar 

  20. Burton, G.W., Joyce, A., and Ingold, K.U. (1982) First Proof That Vitamin E Is Major Lipid-Soluble, Chain-Breaking Antioxidant in Human Blood Plasma,Lancet 2, 327.

    Article  PubMed  CAS  Google Scholar 

  21. Burton, G.W., Joyce, A., and Ingold, K.U. (1983) Is Vitamin E the Only Lipid-Soluble, Chain-Breaking Antioxidant in Human Blood Plasma and Erythrocyte Membranes,Arch. Biochem. Biophys. 221, 281–290.

    Article  PubMed  CAS  Google Scholar 

  22. Burton, G.W., Cheesman, K.H., Doba, D., Ingold, K.U., and Slater, T.F. (1983) Vitamin E as an Antioxidantin vitro andin vivo, inBiology of Vitamin E, (Porter, R., and Whelan, J., eds.), pp. 4–18, Ciba Foundation Symposium No. 101, Pitman, London.

    Google Scholar 

  23. Fritsma, G.A. (1983) Vitamin E and Autoxidation,Am. J. Med. Technol. 49, 453–456.

    PubMed  CAS  Google Scholar 

  24. Parker, R.S. (1989) Dietary and Biochemical Aspects of Vitamin E, inAdvances in Food and Nutrition Research, Vol. 33 (Kinsella, J.E., ed.), pp. 157–232, Academic Press Inc., New York.

    Google Scholar 

  25. Burton, G.W., and Traber, M.G. (1990) Vitamin E: Antioxidant Activity, Biokinetics and Bioavailability,Ann. Rev. Nutr. 10, 357–382.

    Article  CAS  Google Scholar 

  26. Sies, H. (1986) Biochemistry of Oxidative Stress,Angew Chem. 98, 1061–1076.

    CAS  Google Scholar 

  27. Sies, H., and Murphy, M.E. (1991) Role of Tocopherols in the Protection of Biological Systems Against Oxidative Damage,J. Photochem. Photobiol.: B. Biol. 8, 211–224.

    Article  CAS  Google Scholar 

  28. Sies, H., Stahl, W., and Sundqvist, A.R. (1992) Antioxidant Functions of Vitamins: Vitamins E and C, Beta-Carotene and Other Carotenoid, inBeyond Difficiency (Sauberlich, E., and Machlin, L.J., eds.) New York Acta,Ann. N.Y. Acad. Sci. 669, 7–20.

  29. van Acker, S.A.B.E., Koymans, L.M.H., and Bast, A. (1993) Molecular Pharmacology of Vitamin E: Structural Aspects of Antioxidant Activity,Free Rad. Biol. Med. 15, 311–328.

    Article  PubMed  Google Scholar 

  30. Labuza, T.P. (1971) Kinetics of Lipid Oxidation in Foods,CRC Crit. Rev. Food Technol. 2, 355–405.

    Article  Google Scholar 

  31. Hess, J.L. (1993) Vitamin E: α-Tocopherol, inAntioxidants in Higher Plants (Alscher, R.G., and Hess, J.L., eds.) pp. 111–134, CRC Press, Boca Raton.

    Google Scholar 

  32. Combs, G.F., Jr. (1992) Vitamin E, inThe Vitamins: Fundamental Aspects in Nutrition & Health, pp. 179–203, Academic Press Inc., San Diego.

    Google Scholar 

  33. Bauernfeind, J.C., and Desai, I.D. (1977) The Tocopherol Content of Food and Influencing Factors,CRC Crit. Rev. Food Sci. Nutr. 8, 337–382.

    PubMed  CAS  Google Scholar 

  34. Bauernfeind, J.C. (1980) Tocopherols in Foods, inVitamin E: A Comprehensive Treastise (Machlin, L.J., ed.) Marcel Dekker, New York.

    Google Scholar 

  35. McLaughlin, P.J., and Weihrauch, J.L. (1979) Vitamin E Content of Foods,J. Am. Dietitic Assoc. 75, 647–665.

    CAS  Google Scholar 

  36. Burton, G.W., and Ingold, K.U. (1981) Autooxidation of Biological Molecules. 1. The Antioxidant Activity of Vitamin E and Related Chain-Breaking Phenolic Antioxidantsin vitro, J. Am. Chem. Soc. 103, 6472–6477.

    Article  CAS  Google Scholar 

  37. Burton, G.W., and Ingold, K.U. (1986) Vitamin E: Applications of the Principles of Physical Organic Chemistry to the Exploration of Its Structure and Function,Acc. Chem. Res. 19, 194–201.

    Article  CAS  Google Scholar 

  38. Burton, G.W., and Ingold, K.U. (1988) Mechanisms of Antioxidant Action: Preventive and Chain-Breaking Antioxidants, inHandbook of Free Radicals and Antioxidants in Biomedicine, Vol. 2 (Miquel, J., ed.) pp. 29–43, CRC Press, Boca Raton.

    Google Scholar 

  39. Burton, G.W., and Ingold, K.U. (1989) Vitamin E asin vitro andin vivo Antioxidant,Ann. N.Y. Acad. Sci. 570, 7–22.

    PubMed  CAS  Google Scholar 

  40. Pokorny, J. (1987) Major Factors Affecting the Autoxidation of Lipids, inAutoxidation of Unsaturated Lipids (Chan, H.W.S., ed.) pp. 141–206, Academic Press, London.

    Google Scholar 

  41. Dillard, C.J., Gavino, V.C., and Tappel, A.L. (1983) Relative Antioxidant Effectiveness of α-Tocopherol and γ-Tocopherol in Iron-Loaded Rats,J. Nutr. 113, 2266–2273.

    PubMed  CAS  Google Scholar 

  42. VERIS (Vitamin E Research and Information Service) (1993)1993 Vitamin E Abstracts (Horwitt, M.K., ed.) LaGrange, Illinois.

    Google Scholar 

  43. Lea, C.H., and Ward, R.J. (1959) Relative Antioxidant Activity of the Seven Tocopherols,J. Sci. Food Agric. 10, 537–548.

    Article  CAS  Google Scholar 

  44. Olcott, H.S., and Van Der Ven, J. (1968) Comparison of Antioxidant Activities of Tocol and Its Methyl Derivatives,Lipids 3, 331–334.

    CAS  PubMed  Google Scholar 

  45. Parkhurst, R.M., Skinner, W.A., and Strum, P.A. (1968) The Effect of Various Concentrations of Tocopherols and Tocopherol Mixtures on the Oxidative Stabilities of a Sample of Lard,J. Am. Oil Chem. Soc. 45, 641–642.

    CAS  Google Scholar 

  46. Chow, C.K., and Draper, H.H. (1974) Oxidative Stability and Activity of the Tocopherols in Corn and Soybean Oils,Int. J. Vit. Nutr. Res. 44, 396–403.

    CAS  Google Scholar 

  47. Koskas, J.P., Cillard, J., and Cillard, P. (1984) Autooxidation of Linoleic Acid and Behavior of Its Hydroperoxides with and without Tocopherols,J. Am. Oil Chem. Soc. 61, 1466–1469.

    CAS  Google Scholar 

  48. Esterbauer, H., Striegl, G., Puhl, H., Oberreither, S., Rothender, M., El-Saadani, M., and Jurgens, G. (1989) The Role of Vitamin E and Carotenoids in Preventing the Oxidation of Low-Density Lipoproteins,Ann. N. Y. Acad. Sci. 570, 254–267.

    PubMed  CAS  Google Scholar 

  49. Gottstein, T., and Grosch, W. (1990) Model Study of Different Antioxidant Properties of α-and γ-Tocopherol in Fats,Fat Sci. Technol. 92, 139–144.

    CAS  Google Scholar 

  50. Timmermann, von F. (1990) Tocopherole-Antioxidative Wirkung bei Fetten und Ölen,Fat Sci. & Technol. 92, 201–206.

    CAS  Google Scholar 

  51. Moore, R.N., and Bickford, W.G. (1952) A Comparative Evaluation of Several Antioxidants in Edible Fats,J. Am. Oil Chem. Soc. 29, 1–4.

    CAS  Google Scholar 

  52. Jung, M.Y., and Min, D.B. (1990) Effects of α-, γ- and δ-Tocopherols on Oxidative Stability of Soybean Oil,J. Food Sci. 55, 1464–1465.

    Article  CAS  Google Scholar 

  53. Jung, M.Y., and Min, D.B. (1990) Effects of Oxidized α-, γ-and δ-Tocopherols on the Oxidative Stability of Purified Soybean Oil,Food Chem. 45, 183–187.

    Article  Google Scholar 

  54. Lea, C.H. (1960) On the Antioxidant Activities of the Tocopherols. II. Influence of Substrate, Temperature and Level of Oxidation,J. Sci. Food Agric. 11, 212–218.

    Article  CAS  Google Scholar 

  55. Nawar, W.W. (1985) Lipid, inFood Chemistry, 2nd edn. (Fennema, O.R., ed.), pp. 139–244, Marcel Dekker, New York.

    Google Scholar 

  56. Lea, C.H. (1960) Antioxidation in Dry Fat Systems. I. Influence of the Fatty Acid Composition of the Substrate,J. Sci. Food Agric. 11, 143–150.

    Article  CAS  Google Scholar 

  57. Frankel, E.N. (1989) The Antioxidant and Nutritional Effects of Tocopherols, Ascorbic Acid and β-Carotene in Relation to Processing of Edible Oils, inNutritional Impacts of Food Processing, No. 43 (Somogyi, J.C., and Muller, H.R. eds.), pp. 297–312, Bibliotheca ‘Nutritio et dieta, Basel, Karger.

    Google Scholar 

  58. Cillard, J., Cillard, P., Cormier, M., and Girre, L. (1980) α-Tocopherol Prooxidant Effect in Aqueous Media: Increased Autooxidation Rate of Linoleic Acid,J. Am. Oil Chem. Soc. 57, 252–255.

    CAS  Google Scholar 

  59. Cillard, J., Cillard, P., and Cormier, M. (1980) Effect of Experimental Factors on the Prooxidant Behavior of α-Tocopherol,J. Am. Oil Chem. Soc. 57, 255–261.

    CAS  Google Scholar 

  60. Tasuta, T. (1971) Relationship Between Chemical Structure and Biological Activity of Vitamin E,Vitamins 44, 185–190.

    Google Scholar 

  61. Lehmann, J., and Slover, H.T. (1976) Relative Antioxidative and Photolytic Stabilities of Tocols and Tocotrienols,Lipids 11, 853–857.

    PubMed  CAS  Google Scholar 

  62. Nakano, M., Sugioka, K., Nakamura, T., and Oki, T. (1980) Interaction Between an Organic Hydroperoxide and an Unsaturated Phospholipid and α-Tocopherol in Model Membranes,Biochim. Biophys. Acta 619, 274–286.

    PubMed  CAS  Google Scholar 

  63. Komiyama, K., Iizuka, K., Yamaoka, M., Watanabe, H., Tsuchiya, N., and Umezawa, I. (1989) Studies on the Biological Activity of Tocotrienol,Chem. Pharm. Bull. 37, 1369–1371.

    PubMed  CAS  Google Scholar 

  64. Goh, S.H., Hew, N.F., Ong, A.S.H., Choo, Y.M., and Brumby, S. (1990) Tocotrienols from Palm Oil: Electron Spin Resonance Spectra of Tocotrienoxyl Radicals,J. Am. Oil Chem. Soc. 67, 250–254.

    CAS  Google Scholar 

  65. Yamaoka, M., and Komiyama, K. (1989) Antioxidative Activities of α-Tocotrienol and Its Derivative in the Oxidation of Dilinoleolylphosphatidylcholine Liposomes,J. Jpn. Oil Chem. Soc. 38, 478.

    CAS  Google Scholar 

  66. Yamaoka, M., Carrillo, M.J.H., Nakahara, T., and Komiyama, K. (1991) Antioxidative Activities of Tocotrienols on Phospholipid Liposomes,J. Am. Oil Chem. Soc. 68, 114–118.

    CAS  Google Scholar 

  67. Serbinova, E., Kagan, V., Han, D., and Packer, L. (1991) Free Radical Recycling and Intermembrane Mobility in the Antioxidation Properties of alpha-Tocopherol and alpha-Tocotrienol,Free Radic. Biol. Med. 10, 263–275.

    Article  PubMed  CAS  Google Scholar 

  68. Suarna, C, Hood, R.L., Dean, R.T., and Stocker, R. (1993) Comparative Antioxidant Activity of Tocotrienols and Other Lipid-Soluble Antioxidants in a Homogeneous System and in Rat and Human Lipoproteins,Biochem. Biophys. Acta 1166, 163–170.

    PubMed  CAS  Google Scholar 

  69. Suzuki, Y.J., Tsuchiya, M., Wassall, S.R., Choo, Y.M., Govil, G., Kagan, V.E., and Packer, L. (1993) Structural and Dynamic Membrane Properties of α-Tocopherol and α-Tocotrienol: Implications to the Molecular Mechanism of Their Antioxidant Potency,Biochemistry 32, 10692–10699.

    Article  PubMed  CAS  Google Scholar 

  70. Evans, H.M., and Bishop, K.S. (1922) On the Existence of a Hitherto Unrecognized Dietary Factor Essential for Reproduction,Science 56, 650–651.

    Article  CAS  PubMed  Google Scholar 

  71. IUNS (International Union of Nutritional Sciences) Committee on Nomenclature (1978)Nutr. Abst. Rev. 48A, 831–835.

    Google Scholar 

  72. IUPAC-IUB Joint Commission on Biochemical Nomenclature (1982) Nomenclature of Tocopherols and Related Compounds: Recommendations 1981,Eur. J. Biochem. 123, 473–475.

    Google Scholar 

  73. Nelan, D.R., and Robeson, C.D. (1962) The Oxidation Product from α-Tocopherol and Potassium Ferricyanide and Its Reaction with Ascorbic and Hydrochloric Acids,J. Am. Chem. Soc. 84, 2963–2968.

    Article  CAS  Google Scholar 

  74. Frampton, V.L., Skinner, W.A., Cambour, P., and Bailey, P.S. (1969) α-Tocopurple: An Oxidation Product of α-Tocopherol,J. Am. Chem. Soc. 82, 4632–4634.

    Article  Google Scholar 

  75. Hjarde, W., Leerbeck, E., and Leth, T. (1973) The Chemistry of Vitamin E (including its chemical determination),Acta Agric Scand. (Suppl.)19, 87–96.

    Google Scholar 

  76. Kasparek, S. (1980) Chemistry of Tocopherols and Tocotrienols, inVitamin E, A Comprehensive Treatise (Machlin, L.J., ed.), pp. 7–65, Marcel Dekker, Inc, New York and Basel.

    Google Scholar 

  77. Simic, M.G. (1981) Vitamin E Radicals, inOxygen and Oxyradicals in Chemistry and Biology (Rodgers, M.A.J., and Powers, E.L., eds.) Academic Press, New York, p. 109.

    Google Scholar 

  78. Doba, T., Burton, G.W., and Ingold, K.U. (1983) EPR Spectra of Some α-Tocopherol Model Compounds. Polar and Conformational Effects and Their Relation to Antioxidant Activities,J. Am. Chem. Soc. 105, 6505–6506.

    Article  CAS  Google Scholar 

  79. Matsuo, M., Matsumoto, S., and Ozawa, T. (1983) Electron Spin Resonance Spectra and Hyperfine Coupling Constants of the Tocopheroxyl and 2,2,5,7,8-Pentamethylchroman-6-Oxyl Radicals Derived from Vitamin E and Its Model and Deuterated Model Compounds,Org. Mag. Res. 21, 261–264.

    Article  CAS  Google Scholar 

  80. Burton, G.W., Doba, T., Gabe, E.J., Hughes, L., Lee, F.L., Prasad, L., and Ingold, K.U. (1985) Autooxidation of Biological Molecules. 4. Maximizing the Antioxidant Activity of Phenols,J. Am. Chem. Soc. 107, 7053–7065.

    Article  CAS  Google Scholar 

  81. Boguth, W., and Niemann, H. (1971) Electron Spin Resonance of Chromanoxy Free Radicals from Tocopherol and Tocol,Biochim. Biophys. Acta 248, 121–130.

    PubMed  CAS  Google Scholar 

  82. Mukai, K., Tsuzuki, N., Ishizu, K, Ouchi, S., and Fukuzawa, K. (1981) Electron Nuclear Double Resonance Studies on Radicals Produced by the Lead (II) Oxide Oxidation of α-Tocopherol and Its Model Compound in Solution,Chem. Phys. Lipids 29, 129–135.

    Article  CAS  Google Scholar 

  83. Mukai, K., Tsuzuki, N., Ouchi, S., and Fukuzawa, K. (1982) Electron Spin Resonance Studies of Chromanoxyl Radicals Derived from Tocopherols,Chem. Phys. Lipids 30, 337–345.

    Article  CAS  Google Scholar 

  84. Matsuo, M., and Matsumoto, S. (1983) Electron Spin Resonance Spectra of the Chromanoxyl Radicals Derived from Tocopherols (vitamin E) and Their Related Compounds,Lipids 18, 81–86.

    CAS  Google Scholar 

  85. Tsuchiya, J., Niki, E., and Kamiya, Y. (1983) Oxidation of Lipids. IV. Formation and Reaction of Chromanoxyl Radicals as Studies by Electron Spin Resonance,Bull. Chem. Soc. Jpn 56, 229–231.

    Article  CAS  Google Scholar 

  86. Kagan, V.E., Sebinova, E.A., and Packer, L. (1990) Recylcing and Antioxidant Activity of Tocopherol Homologs of Differing Hydrocarbon Chain Lengths in Liver Microsomes,Arch. Biochem. Biophys. 282, 221–225.

    Article  PubMed  CAS  Google Scholar 

  87. Sumarno, M., Atkinson, E., Suarna, C., Saunders, J.K., Cole, E.R., and Southwell-Keely, P. T. (1987) Solvent Influence on Model Oxidations of α-Tocopherol,Biochim. Biophys. Acta 920, 247–250.

    PubMed  CAS  Google Scholar 

  88. Suarna, C., and Southwell-Keely, P.T. (1988) New Oxidation Products of α-Tocopherol,Lipids 23, 137–139.

    CAS  Google Scholar 

  89. Suarna, C., and Southwell-Keely, P.T. (1989) Effect of Alcohols on the Oxidation of Vitamin E Model Compound 2,2,5,7,8-Pentamethyl-6-Chromanol,Lipids 24, 56–60.

    PubMed  CAS  Google Scholar 

  90. Suarna, C., Sumarno, D. N., and Southwell-Keely, P.T. (1988) New Oxidation Products of 2,2,5,7,8-Pentamethyl-6-Chromanol,Lipids 23, 1129–1131.

    Google Scholar 

  91. Suarna, C., Baca, M., and Southwell-Keely, P.T. (1992) Oxidation of the α-Tocopherol Model Compound 2,2,5,7,8-Pentamethyl-6-Chromanol in the Presence of Alcohols,Lipids 27, 447–453.

    CAS  Google Scholar 

  92. Suarna, C., Craig, D.C., Cross, K.G., and Southwell-Keely, P.T. (1988) Oxidation of Vitamin E (α-tocopherol) and Its Model Compound 2,2,5,7,8-Pentamethyl-6-Hydroxychroman: A New Dimer,J. Org. Chem. 53, 1281–1284.

    Article  CAS  Google Scholar 

  93. Suarna, C., and Southwell-Keely, P.T. (1991) Antioxidant Activity of Oxidation Products of α-Tocopherol and of Its Model Compound 2,2,5,7,8-Pentamethyl-6-Chromanol,Lipids 26, 187–190.

    CAS  Google Scholar 

  94. Nillson, J.L.G., Doyle Daves, G., and Folkers, K. (1968) New Tocopherol Dimers,Acta Chem. Scand. 22, 200–206.

    Google Scholar 

  95. Nillson, J.L.G., Doyle Daves, G., and Folkers, K. (1968) The Oxidative Dimerization of α-, β-, ψ-, and Δ-Tocopherols,Acta Chem. Scand. 22, 207–218.

    Google Scholar 

  96. Gross, A.J., and Sizer, I.W. (1959) The Oxidation of Tyramine, Tyrosine and Related Compounds by Peroxidase,J. Biol. Chem. 234, 1611–1614.

    PubMed  CAS  Google Scholar 

  97. Nakamura, T., and Kijima, S. (1972) Studies on Tocopherol Derivatives. III. Oxidation of Δ-Tocopherol and 6-Hydroxy-2,2,8-Trimethylchroman,Chem. Pharm. Bull. 20, 1297–1304.

    CAS  Google Scholar 

  98. Lambelet, P., and Löliger, J. (1984) The Fate of Antioxidant Radicals During Lipid Autoxidation. 1. The Tocopheroxyl Radical,Chem. Phys. Lipids 35, 185–198.

    Article  PubMed  CAS  Google Scholar 

  99. Denisov, E.T., and Khudyakov, I.V. (1987) Mechanisms of Action and Reactivities of the Free Radicals of Inhibitors,Chem. Revs. 87, 1313–1357.

    Article  CAS  Google Scholar 

  100. Rousseau-Richard, C., Richard, C., and Martin, R. (1988) Kinetics of Bimolecular Decay of α-Tocopheroxyl Free Radicals Studied by ESR,FEBS Lett. 233, 307–310.

    Article  PubMed  CAS  Google Scholar 

  101. Skinner, W.A., and Parkhurst, R.M. (1966) Oxidation Products of Vitamin E and Its Model, 6-Hydroxyl-2,2,5,7,8-Pentamethylchroman. VIII. Oxidation with Benzoyl Peroxide,J. Org. Chem. 31, 1248–1251.

    PubMed  CAS  Google Scholar 

  102. Draper, H.H., Csallany, A.S., and Chiu,M. (1976) Isolation of a Trimer of α-Tocopherol from Mammalian Liver,Lipids 2, 47–54.

    Google Scholar 

  103. Yamauchi, R, Kato, K., and Ueno, K. (1988) Formation of Trimers of α-Tocopherol and Its Model Compound, 2,2,5,7,8-Pentamethylchroman-6-ol in Autoxidizing Methyl Linoleate,Lipids 23, 779–783.

    PubMed  CAS  Google Scholar 

  104. Yamauchi, R, Matsui, T., Kato, K., and Ueno, K. (1989) Reaction Products of α-Tocopherol with a Free Radical Initiator, 2,2′-Azobis(2,4-dimethylvaleronitrile),Lipids 24, 204–209.

    PubMed  CAS  Google Scholar 

  105. Yamauchi, R, Matsui, T., Kato, K, and Ueno, K. (1989) Reaction of α-Tocopherol with 2,2′-Azobis(2,4-dimethyl-valeronitrile) in Benzene,Agric. Biol. Chem. 53, 3257–3262.

    CAS  Google Scholar 

  106. Igarashi, O., Hagino, M., and Inagaki, C. (1973) Decomposition of α-Tocopheryl Spirodimer by Alkaline Saponification,J. Nutr. Sci. Vitaminol. 19, 469–474.

    PubMed  CAS  Google Scholar 

  107. Matsuo, M., Matsumoto, S., Iitaka, Y., and Niki, E. (1989) Radical Scavenging Reactions of Vitamin E and Its Model Compound, 2,2,5,7,8-Pentamethylchroman-6-ol, in aterl-Butylperoxy Radical Generating System,J. Am. Chem. Soc. 111, 7179–7185.

    Article  CAS  Google Scholar 

  108. Liebler, D.C., Baker, P.F., and Kaysen, K.L. (1990) Oxidation of Vitamin E: Evidence for Competing Autoxidation and Peroxy Radical Trapping Reactions of the Tocopheroxyl Radical,J. Am. Chem. Soc. 112, 6995–7000.

    Article  CAS  Google Scholar 

  109. Winterle, J.S., Dulin, D., and Mill, T. (1984) Products and Stoichiometry of Reaction of Vitamin E with Alkyl Peroxy Radicals,J. Org. Chem. 49, 491–495.

    Article  CAS  Google Scholar 

  110. Csallany, A.S., Draper, H.H., and Shah, S.N. (1962). Conversion of α-Tocopherol-C14 to Tocopheryl-p-Quinonein vivo, Arch. Biochem. Biophys 98, 142–145.

    Article  PubMed  CAS  Google Scholar 

  111. Komoda, M., and Harada, I. (1969). A Dimeric Oxidation Product of γ-Tocopherol in Soybean Oil,J. Am. Chem. Soc. 46, 18–22.

    CAS  Google Scholar 

  112. Yamauchi, R., Matsui, T., Kato, K., and Ueno, K. (1990) Reaction Products of γ-Tocopherol with an Alkyl Peroxy Radical in Benzene,Agric. Biol. Chem. 54, 2703–2709.

    CAS  Google Scholar 

  113. McHale, D., and Green, J. (1963). A Dimeric Oxidation Product of γ-Tocopherol,Chem. & Ind. (London), 982–983.

  114. Ishikawa, Y. (1974) Yellow Reaction Products from Tocopherol and Trimethylamine Oxide,Agric. Biol. Chem. 38, 2545–2547.

    CAS  Google Scholar 

  115. Ishikawa, Y., and Yuki, E. (1975) Reaction Products from Various Tocopherols with Trimethylamine Oxide and Their Antioxidative Activities,Agric. Biol. Chem. 39, 851–857.

    CAS  Google Scholar 

  116. Fujitani, T., and Ando, H. (1981) Oxidation Dimerization of Tocopherols During the Course of Autoxidation of Methyl Esters of Saturated and Unsaturated Fatty Acids. I. Oxidative Dimerization of γ-Tocopherol Under A.O.M. Condition,J. Japan Oil Chem. Soc. 30, 145–150.

    CAS  Google Scholar 

  117. Fujitani, T., and Ando, H. (1984) Oxidation Dimerization of Tocopherols During the Course of Autoxidation of Methyl Esters of Saturated and Unsaturated Fatty Acids. II. Oxidative Dimerization of α- and Δ-Tocopherols Under A.O.M. Conditions,J. Japan. Oil Chem. Soc. 33, 356–360.

    CAS  Google Scholar 

  118. Kwi-Hyun, H., and Igarashi, O. (1990) The Oxidation Products from Two Kinds of Tocopherols Co-Existing in Autoxidation System of Methyl Linoleate,J. Nutr. Sci. Vitaminol 36, 411–421.

    Google Scholar 

  119. Yamauchi, R., Miyake, N., Kato, K., and Ueno, K. (1993) Reaction of α-Tocopherol with Alkyl and Alkyl Peroxy Radicals of Methyl Linoleate,Lipids 28, 201–206.

    PubMed  CAS  Google Scholar 

  120. Wasson, J.J., and Smith, W.M. (1953) Effect of Alkyl Substitution on Antioxidant Properties of Phenols,Ind. & Ing. Chem. 45, 197.

    Article  CAS  Google Scholar 

  121. Cort, W.M. (1974) Hemoglobin Peroxidation Test Screens Antioxidants,Food Technol. 10, 60–66.

    Google Scholar 

  122. Wacks, W. (1949) Elektrometrische Redoxmessungen an Natürlichen Fett-Antioxydantien,Biochem. Z. 319, 561–570.

    Google Scholar 

  123. Niki, E., Tsuchiya, J., Yoshikawa, Y., Yamamoto, Y., and Kamiya, Y. (1986) Antioxidant Activities of α-, β-, ψ- and Δ-Tocopherols,Bull. Chem. Soc. Jpn 59, 497–501.

    Article  CAS  Google Scholar 

  124. Burton, G.W., LaPage, Y., Fabe, E.J., and Ingold, K.U. (1980) Antioxidant Activity of Vitamin E and Related Phenols: Importance of Stereoelectronic Factors,J. Am. Chem. Soc. 102, 7791–7792.

    Article  CAS  Google Scholar 

  125. Mukai, K., Uemoto, Y., Fukuhara, M., Nagaoka, S., and Ishizu, K. (1992) ENDOR Study of the Cation Radicals of Vitamin E Derivatives: Relation Between Antioxidant Activity and Molecular Structure,Bull. Chem. Soc. Jpn. 65, 2016–2020.

    Article  CAS  Google Scholar 

  126. Nagaoka, S., Sawada, K., Fukumoto, Y., Nagashima, U., Katasumata, S., and Mukai, K. (1992) Mechanism of Antioxidant Reaction of Vitamin E: Kinetic, Spectroscopic andab initio Study of Proton-Transfer Reactions,J. Phys. Chem. 96, 6663–6668.

    Article  CAS  Google Scholar 

  127. Nagaoka, S., Mukai, K., Itoh, T., and Katsumata, S. (1992) Mechanism of Antioxidant Reaction of Vitamin E: Photoelectron Spectroscopy andab initio Calculation,J. Phys. Chem. 96, 8184–8187.

    Article  CAS  Google Scholar 

  128. Nagaoka, S., Kuranaka, A., Tsuboi, H., Nagashima, U., and Mukai, K. (1992) Mechanism of Antioxidant Reaction of Vitamin E: Charge Transfer and Tunneling Effect in Proton-Transfer Reactions,J. Phys. Chem. 86, 2754–2761.

    Article  Google Scholar 

  129. Sliwiok, von J., and Kocjan, B (1992) Chromatographische Untersuchungen der Hydrophoben Eigenschaften von Tocopherolen,Fat Sci. Technol. 94, 157–159.

    CAS  Google Scholar 

  130. Ingold, K.U., and Howard, J.A. (1962) Reactions of Phenols with Peroxy Radicals,Nature 195, 280–281.

    Article  CAS  Google Scholar 

  131. Howard, J.A., and Ingold, K.U. (1962) The Inhibited Autoxidation of Styrene. III. The Relative Inhibiting Effeciencies ofmeta- andpara-Substituted Phenols,Can. J. Chem. 41, 1744–1751.

    Article  Google Scholar 

  132. Howard, J.A., and Ingold, K.U. (1963) The Inhibited Autoxidation of Styrene. III. The Relative Inhibiting Efficiencies oforth-Alkyl Phenols,Can. J. Chem. 41, 2800–2806.

    Article  Google Scholar 

  133. Massey, J.B. (1984) Kinetics of Transfer of α-Tocopherol Between Model and Native Plasma Lipoproteins,Biochim. Biophys. Acta 793, 387–392.

    PubMed  CAS  Google Scholar 

  134. Ingold, K.U., Burton, G.W., Foster, D.O., Zuker, M., Hughes, L., Lacelle, S., Lusztyk, E., and Slaby, M. (1986) A New Vitamin E Analogue More Active Than α-Tocopherol in the Rat Curative Myopathy Bioassay,FEBS Lett. 205, 117–120.

    Article  PubMed  CAS  Google Scholar 

  135. Ingold, K.U., Webb, A., Witter, D., Burton, G.W., Metacalfe, T.A., and Muller, D.P. (1987) Vitamin E Remains the Major Lipid-Soluble, Chain-Breaking Antioxidant in Human Plasma Even in Individuals Suffering Severe Vitamin E Deficiency,Arch. Biochem. Biophys. 259, 224–225.

    Article  PubMed  CAS  Google Scholar 

  136. Ingold, K.U., Burton, G.W., Foster, D.O., and Hughes, L. (1990) Further Studies of a New Vitamin E Analogue More Active Than α-Tocopherol in the Rat Curative Myopathy Bioassay,FEBS Lett. 267, 63–67.

    Article  PubMed  CAS  Google Scholar 

  137. Ingold, K.U., Burton, G.W., Foster, D.O., and Hughes, L. (1990) Is Methyl-Branching in α-Tocopherol's “Tail” Important for Itsin vivo Activity? Rat Curative Bioassay Measurements of the Vitamin E Activity of three 2RS-n-alkyl-2,5,7,8-Tetramethyl-6-Hydroxychromans,Free Radic. Biol. Med. 9, 205–210.

    Article  PubMed  CAS  Google Scholar 

  138. Burton, G.W., Hughes, L., and Ingold, K.U. (1983) Antioxidant Activity of Phenols Related to Vitamin E: Are There Chain-Breaking Antioxidants Better Than α-Tocopherol?,J. Am. Chem. Soc. 105, 5950–5951.

    Article  CAS  Google Scholar 

  139. Hughes, L., Burton, G.W., Ingold, K.U., Slaby, M., and Foster, D.O. (1992) Custom Design of Betterin vivo Antioxidants Structurally Related to Vitamin E, inPhenolic Compounds in Food and Their Effects on Health, vol. 2: Antioxidants and Cancer Prevention, Chapter 14 (Ho, C.-T., Lee, C.Y., and Huang, M.-T., eds.) pp. 350–366, ACS Series 507, Washington D.C.

  140. Ames, S.R. (1971) Isomers of α-Tocopheryl Acetate and Their Bioligical Activity,Lipids 6, 281–290.

    CAS  Google Scholar 

  141. Ames, S.R. (1979) Biopotencies in Rat of Several Forms of α-Tocopherol,J. Nutr. 109, 2198–2204.

    PubMed  CAS  Google Scholar 

  142. Weiser, H, and Vecchi, M. (1981) Stereoisomers of α-Tocopheryl Acetate: Characterization of the Samples by Physicochemical Methods and Determination of Biological Activities in the Rat Resorption Gestation Test,Int. J. Vit. Nutr. Res. 51, 100–113.

    CAS  Google Scholar 

  143. Weiser, H, and Vecchi, M. (1982) Stereoisomers of α-Tocopheryl Acetates. II. Biopotencies of Eight Stereoisomers, Individually or in Mixtures as Determined by Rat Resorption-Gestation Tests,Int. J. Vit. Nutr. Res. 52, 351–370.

    CAS  Google Scholar 

  144. Machlin, L.J., Gabriel, E., and Brin, M. (1982) Biopotency of α-Tocopherol as Determined by Curative Myopathy Bioassay in the Rat,J. Nutr. 112, 1437–1440.

    PubMed  CAS  Google Scholar 

  145. Ingold, K.U., Burton, G.W., Foster, D.O., Hughes, L., Lindsay, D.A., and Webb, A. (1987) Biokinetics and Discrimination Between DietaryRRR- andSRR-α-Tocopherol in the Male Rat,Lipids 22, 163–172.

    PubMed  CAS  Google Scholar 

  146. Niki, E., Tsuchiya, J., Kawakimi, A., Saito, M., Yamamoto, Y., and Kamiya, Y. (1985) Effects of Phytyl Side Chain of Vitamin E on Its Antioxidant Activity,J. Biol. Chem. 260, 2191–2196.

    PubMed  CAS  Google Scholar 

  147. Diplock, A.T., and Lucy, J. (1973) The Biochemical Modes of Action of Vitamin E and Selenium: A Hypothesis,FEBS Lett. 29, 205–210.

    Article  PubMed  CAS  Google Scholar 

  148. Perly, B., Smith, L.C.P., Hughes, L.H., Burton, G.W., and Ingold, K.U. (1985) Estimation of the Location of Natural α-Tocopherol in Lipid Bilayers,Biochim. Biophys. Acta 819, 131–135.

    Article  PubMed  CAS  Google Scholar 

  149. Wefers, H., and Sies, H. (1988) The Protection by Ascorbate and Glutathione Against Microsomal Lipid Peroxidation Is Dependent on Vitamin E,Eur. J. Biochem. 174, 353–357.

    Article  PubMed  CAS  Google Scholar 

  150. Wefers, H., and Sies, H. (1988) Antioxidant Defense: Vitamins E and C and Beta-Carotene, inOxy-Radicals in Molecular Biology and Pathology (Cerutti, P.A., Fridovich, I., and McCord, J.M., eds.) pp. 481–490, Alan R. Liss, Inc., New York.

    Google Scholar 

  151. Diplock, A.T. (1985) Vitamin E, inFat-Soluble Vitamins (Diplock, A.T., ed.) pp. 154–224, Technomic Publisher, Lancaster.

    Google Scholar 

  152. Bunyan, J., McHale, D., Green, J., and Marcinkiewicz, S. (1961) Biological Potencies of ε and ζ1-Tocopherol and 5-Methyltocol,Br. J. Nutr. 15, 253–257.

    Article  PubMed  CAS  Google Scholar 

  153. Traber, M.G., Burton, G.W., Hughes, L., Ingold, K.U., Hidaka, H., Malloy, M., Kane, J., Hyams, J., and Kayden, H.J. (1992) Discrimination Between Forms of Vitamin E by Humans with and without Genetic Abnormalities of Lipoprotein Metabolism,J. Lipid Res. 33, 1171–1182.

    PubMed  CAS  Google Scholar 

  154. Kayden, H.J., and Traber, M.G. (1993) Absorption, Lipoprotein Transport and Regulation of Plasma Concentrations of Vitamin E in Humans,J. Lipid Res. 34, 343–358.

    PubMed  CAS  Google Scholar 

  155. Clément, M., Dinh, L., and Bourre, J.-M. (1995) Uptake of DietaryRRR-α- andRRR-γ-Tocopherol by Nervous Tissues, Liver and Muscle in Vitamin E-Deficient Rats,Biochim. Biophys. Acta 1256, 175–180.

    PubMed  Google Scholar 

  156. Traber, M.G., Burton, G.W., Ingold, K.U., and Kayden, H.J. (1990)RRR- andSRR-Tocopherols Are Secreted Without Discrimination in Human Chylomicrons, ButRRR-α-Tocopherol Is Preferentially Secreted in Very Low Density Lipiproteins,J. Lipid Res. 31, 675–685.

    PubMed  CAS  Google Scholar 

  157. Kiyose, C., Hayashi, K., Ueda, T., and Igarashi, O (1994) Distribution of α-Tocopherol Stereoisomers in Rats,Biosci. Biotech. Biochem. 58, 2000–2003.

    Google Scholar 

  158. Kiyose, C., Muramatsu, R., Ueda, T, and Igarashi, O. (1995) Change in Distribution of α-Tocopherol Stereoisomers in Rats After Intravenous Administration,Biosci. Biotech. Biochem. 59, 791–795.

    Article  CAS  Google Scholar 

  159. Kiyose, C., Muramatsu, R., Fujiama-Fujiwara, Y., Ueda, T., and Igarashi, O. (1995) Biodiscrimination of α-Tocopherol Stereoisomers During Intestinal Absorption,Lipids 30, 1015–1018.

    PubMed  CAS  Google Scholar 

  160. Catignani, G.L., and Bieri, J.G. (1975) Rat Liver α-Tocopherol Binding Protein,Biochem. Biophys. Acta 497, 349–357.

    Google Scholar 

  161. Kaplowitz, N., Yoshida, H., Kuhlenkamp, J., Slitsky, B., Ren, I., and Stolz, A. (1989) Tocopherol-Binding Protein of Hepatic Cytosol,Ann. N.Y. Acad. Sci. 570, 85–94.

    PubMed  CAS  Google Scholar 

  162. Sato, Y., Hagiwara, K., Arai, H., and Inoue, K. (1991) Purification and Characterization of the α-Tocopherol Transfer Protein from Rat Liver,FEBS Lett. 288, 41–45.

    Article  PubMed  CAS  Google Scholar 

  163. Yoshida, H., Yusin, M., Ren, I., Kuklenkamp, J., Hirano, T., Stolz, A., and Kaplowitz, N. (1992) Identification, Purification and Immunochemical Characterization of a Tocopherol-Binding Protein in Rat Liver Cytosol,J. Lipid Res. 33, 343–350.

    PubMed  CAS  Google Scholar 

  164. Gotoda, T., Arita, M., Arai, H., Inoue, K., Yokota, T., Fukuo, Y., Yazaki, Y., and Yamada, N. (1995) Adult-Onset Spinocerebellar Dysfunction Caused by Mutation in the Gene for the α-Tocopherol-Transfer Protein,N. Eng. J. Med. 333, 1313–1318.

    Article  CAS  Google Scholar 

  165. Leth, T., and Sondergaad, H. (1977) Biological Activity of Vitamin E Compounds and Natural Materials by the Resorption-Gestation Test and Chemical Determination of Vitamin E Activity in Foods and Feeds,J. Nutr. 107, 2236–2243.

    PubMed  CAS  Google Scholar 

  166. Cadenas, E. (1989) Biochemistry of Oxygen Toxicity, A Review,Biochemistry 58, 79–110.

    CAS  Google Scholar 

  167. Hennig, B., and Chow, C.K. (1988) Lipid Peroxidation and Endothelial Cell Injury: Implications in Athersclerosis,Free Radic. Biol. Med. 4, 99–106.

    Article  PubMed  CAS  Google Scholar 

  168. Packer, J.E., Mahood, J.S., Mora-Arellano, V.O., Slater, T.F., Wilson, R.L., and Wolfenden, B.S. (1981) Free Radicals and Singlet Oxygen-Scavengers: Reactions of a Peroxy Radical with β-Carotene, Diphenyl Furan and 1,4-Diazobicyclo-(2,2,2)-Octane,Biochem. Biophys. Res. Commun. 98, 901–906.

    Article  PubMed  CAS  Google Scholar 

  169. Maillard, B., Ingold, K.U., and Scaniano, J.C. (1983) Rate Constants for the Reactions of Free Radicals with Oxygen in Solution,J. Am. Chem. Soc. 105, 5095–5099.

    Article  CAS  Google Scholar 

  170. Ingold, K.U. (1961) Inhibition of the Autoxidation of Organic Substances in the Liquid Phase,Chem. Rev. 61, 563–589.

    Article  CAS  Google Scholar 

  171. Schaich, K.M. (1992) Metals and Lipid Peroxidation: Contemporary Issues,Lipids 27, 209–218.

    PubMed  CAS  Google Scholar 

  172. Campbell, T.W., and Coppinger, G.M. (1952) The Reaction oftert-Butyl Hydroperoxide with Some Phenols,J. Am. Chem. Soc. 74, 1467–1469.

    Google Scholar 

  173. Gardner, H.W., Eskins, K., Grams, G.W., and Inglett, G.E. (1972) Radical Addition of Linoleic Hydroperoxides to α-Tocopherol or the Analogous Hydroxychroman,Lipids 7, 324–334.

    CAS  Google Scholar 

  174. Yamauchi, R., Kato, K., and Ueno, Y. (1995) Free Radical Scavenging Reactions of α-Tocopherol During the Autoxidation of Methyl Linoleate in Bulk Phase,J. Agric. Food. Chem. 43, 1455–1461.

    Article  CAS  Google Scholar 

  175. Yamauchi, R., Yamamoto, N., and Koji, K. (1995) Iron-Catalyzed Reaction Products of α-Tocopherol with Methyl-13(S)-Hydroperoxy-9(Z),11(E)-Octadecadienoate,Lipids 30, 395–404.

    PubMed  CAS  Google Scholar 

  176. Liebler, D.C., and Burr, J.A. (1995) Antioxidant Stoichiometry and the Oxidative Fate of Vitamin E in Peroxy Radical Scavening Reactions,Lipids 30, 789–793.

    PubMed  CAS  Google Scholar 

  177. Winterle, J.S., and Mill, T. (1981) Reactions of Vitamin E with Alkyl Peroxy Radicals in Homoggeneous Solution and Liposome, inOxygen and Oxy-Radicals in Chemistry and Biology (Rodgers, M.A.J., and Powers, E.L., eds.) pp. 779–780, Academic Press, New York.

    Google Scholar 

  178. Pryor, W.A., Cornicelli, J.A., Devall, L.J., Tait, D., Trevedi, B.K., Witiak, D.T., and Wu, M. (1993) A Rapid Screening Test to Determine the Antioxidant Potencies of Natural and Synthetic Antioxidants,J. Org. Chem. 58, 3521–3532.

    Article  CAS  Google Scholar 

  179. Kharitonova, A.A., Kozlova, Z.G., Tsepalov, V.F., and Gladyshev, G. (1979) Kinetic Analysis of the Properties of Antioxidants in Complex Compositions Using a Model Chain-Reaction,Kinet. Katal. 20, 593–599.

    CAS  Google Scholar 

  180. Packer, J.E., Slater, T.F., and Willison, R.L. (1979) Direct Observation of a Free Radical Interaction Between Vitamin E and Vitamin C,Nature 278, 737–738.

    Article  PubMed  CAS  Google Scholar 

  181. Patterson, L.K. (1981) Studies of Radiation-Induced Peroxidation in Fatty Acid Micelles, inOxygen and Oxy-Radicals in Chemistry and Biology (Rodgers, M.A.J., and Powers, E.L., eds.) pp. 89–95, Academic Press, New York.

    Google Scholar 

  182. Chance, B., Sies, H., and Boveris, A. (1979) Hydroperoxide Metabolism in Mamalian Organs,Physiol. Rev. 59, 527–605.

    PubMed  CAS  Google Scholar 

  183. Fukuzawa, K., and Gebicki, J.M. (1983) Oxidation of α-Tocopherol in Micelles and Liposomes by the Hydroxyl, Perhydroxyl and Superoxide Free Radicals,Arch. Biochem. Biophys. 226, 242–251.

    Article  PubMed  CAS  Google Scholar 

  184. Csallany, A.S., and Ha, Y.L. (1992) α-Tocopherol Oxidation Mediated by Superoxide Anion (O 2 . I. Reactions in Aprotic and Protic Conditions,Lipids 27, 195–200.

    PubMed  CAS  Google Scholar 

  185. Ha, Y.L., and Csallany, A.S. (1992) α-Tocopherol Oxidation Mediated by Superoxide Anion (O 2 ). II. Identification of the Stable α-Tocopherol Oxidation Products,Lipids 27, 201–205.

    PubMed  CAS  Google Scholar 

  186. Nishikimi, M., Yamada, H., and Yagi, K. (1980) Oxidation by Superoxide of Tocopherols Dispersed in Aqueous Media with Deoxycholate,Biochim. Biophys. Acta 627, 101–108.

    PubMed  CAS  Google Scholar 

  187. Durckheimer, W., and Cohen, L.A. (1964) The Chemistry of 9-Hydroxy-α-Tocopherone: A Quinone Hemiacetal,J. Am. Chem. Soc. 86, 4388–4393.

    Article  Google Scholar 

  188. Grams, G.W., and Eskins, K. (1972) Dye-Sensitized Photoxidation of Tocopherols: Correlation Between Singlet Oxygen Reactivity and Vitamin E Activity,Biochemistry 11, 606–608.

    Article  PubMed  CAS  Google Scholar 

  189. Fahrenholtz, S.R., Doleiden, F.H., Trozzolo, A.M., and Lamola, A.A. (1974) On the Quenching of Singlet Oxygen by α-Tocopherol,Photochem. Photobiol. 20, 505–509.

    PubMed  CAS  Google Scholar 

  190. Foote, C.S., Ching, T.Y., and Geller, G.G. (1974) Chemistry of Singlet Oxygen. VIII. Rates of Reaction and Quenching of α-Tocopherol and Singlet Oxygen,Photochem. Photobiol. 20, 511–513.

    PubMed  CAS  Google Scholar 

  191. Foote, C.S. (1979) Quenching of Singlet Oxygen, inSinglet Oxygen (Wasserman, H.H., and Murray, R.W., eds.) pp. 139–171, Academic Press, New York.

    Google Scholar 

  192. Stevens, B., Small, R.D., and Perez, S.R. (1974) The Photoperoxidation of Unsaturated Organic Molecules. XIII. O2 1Δg Quenching by α-Tocopherol,Photochem. Photobiol. 20, 515–517.

    PubMed  CAS  Google Scholar 

  193. Yamauchi, R., and Matsushita, S. (1977) Quenching Effect of Tocopherols on the Methyl Linoleate Photooxidation and Their Oxidation Products,Agric. Biol. Chem. 41, 1425–1430.

    CAS  Google Scholar 

  194. Yamauchi, R., and Matsushita, S. (1979) Products Formed by Photosensitized Oxidation of Tocopherols,Agric. Biol. Chem. 43, 2151–2156.

    CAS  Google Scholar 

  195. Clough, R.L., and Yee, B.G. (1978) Photoxidation of Tocopherols, inTocopherol, Oxygen and Biomembranes (deDuve, C., and Hayaishi, O., eds.) Elsevier, Amesterdam.

    Google Scholar 

  196. Clough, R.L., Yee, B.G., and Foote, C.S. (1979) Chemistry of Singlet Oxygen. XXX. The Unstable Primary products of Tocopherol Photoxidation,J. Am. Chem. Soc. 101, 683–686.

    Article  CAS  Google Scholar 

  197. Gorman, A.A., Gould, I.R., Hamblett, I., and Standen, M.C. (1984) Reversible Exciplex Formation Between Singlet Oxygen (1Δg) and Vitamin E: Solvent and Temperature Effects,J. Am. Chem. Soc. 106, 6956–6959.

    Article  CAS  Google Scholar 

  198. Neely, W.C., Martin, J.M., and Barker, S.A. (1988) Products and Relative Reaction Rates of the Oxidation of Tocopherols with Singlet Molecular Oxygen,Photochem. Photobiol. 48, 423–428.

    PubMed  CAS  Google Scholar 

  199. Kaiser, S., DiMascio, P., Murphy, M.E., and Sies, H. (1990) Physical and Chemical Scavening of Singlet Molecular Oxygen by the Tocopherols,Arch. Biochem. Biophys. 277, 101–108.

    Article  PubMed  CAS  Google Scholar 

  200. Kough, K., and Min, D.B. (1993) Reaction Rates of α-, γ- and δ-Tocopherols with Singlet Oxygen,INFORM 4, 528.

    Google Scholar 

  201. Jung, M.Y., Lee, E., and Min, D.B. (1991) α-, γ- and δ-Tocopherols Effects on Chlorophyll Photosensitized Oxidation of Soybean Oil,J. Food Sci. 56, 807–810.

    Article  CAS  Google Scholar 

  202. D'Ischia, M., Costantini, C., and Aprota, G. (1991) Dye-Sensetized Photoxidation of Vitamin E Revisitized: New 7-Oxaspiro[4.5]-dec-1-ene-3,6-Dione Products by Oxygenation and Ring Contraction of α-Tocopherol,J. Am. Chem. Soc. 113, 8353–8356.

    Article  Google Scholar 

  203. Thomas, M., and Foote, C.S. (1974) Chemistry of Oxygen. XXVI. Photooxygenation of Phenols,Photochem. Photobiol. 27, 683–693.

    Google Scholar 

  204. Foote, C.S. (1976) Photosensitized Oxidations and Singlet Oxygen: Consequences in Biological Systems, inFree Radicals in Biology—Vol. 2 (Pryor, W.A., ed.) pp. 85, Academic Press, New York.

    Google Scholar 

  205. Fragata, M., and Bellemare, F. (1980) Model of Singlet Oxygen Scavenging by α-Tocopherol in Biomembranes,Chem. Phys. Lipids 27, 93–99.

    Article  CAS  Google Scholar 

  206. Krinsky, N.I. (1992) Mechanism of Action of Biological Antioxidants,Proc. Soc. Expt. Biol. Med. 200, 248–254.

    CAS  Google Scholar 

  207. Di Mascio, P., Kaiser, S., and Sies, H. (1989) Lycopene as the Most Efficient Biological Carotenoid Singlet Oxygen Quencer,Arch. Biochem. Biophys. 274, 532–538.

    Article  PubMed  Google Scholar 

  208. Zweig, A., and Hunderson, Jr., W.A. (1975) Singlet Oxygen and Polymer Photoxidation. I. Sensitizers, Quenchers and Reactants,J. Polymer Sci. Polym. Chem. Ed. Pt. A, 1, 717–736.

    Article  Google Scholar 

  209. Grams, G.W. (1971) Oxidation of α-Tocopherol by Singlet Oxygen,Tetrahedron Lett. 4823–4825.

  210. Grams, G.W., Eskins, K., and Inglett, G.E. (1972) Dye-Sensitized Photo-Oxidation of α-Tocopherol,J. Am. Chem. Soc. 94, 866–868.

    Article  PubMed  CAS  Google Scholar 

  211. Terao, J., and Matsushita, S. (1980) The Isomeric Composition of Monohydroperoxides Produced by Oxidation of Unsaturated Fatty Acid Esters with Singlet Oxygen,J. Food Process Preserv. 3, 329–337.

    Google Scholar 

  212. Carlson, D.J., Suprunchuk, T., and Willes, D.M. (1976) Photoxidation of Unsaturated Oils: Effect of Singlet Oxygen Quenchers,J. Am. Oil. Chem. Soc. 53, 656–660.

    Google Scholar 

  213. Mukai, K., and Okauchi, Y. (1989) Kinetic Study of the Reaction Between Tocopheroxyl Radical and Unsaturated Fatty Acid Esters in Benzene,Lipids 24, 936–939.

    CAS  Google Scholar 

  214. Mukai, K., Kohno, Y., and Ishizu, K. (1988) Kinetic Study of the Reaction Between Vitamin E Radical and Alkyl Hydroperoxides in Solution,Biochem. Biophys. Res. Commun. 155, 1046–1050.

    Article  PubMed  CAS  Google Scholar 

  215. Mukai, K., Morimoto, H., Okauchi, Y., and Nagaoka, S. (1993) Kinetic Study of Reactions Between Tocopheroxyl Radicals and Fatty Acids,Lipids 28, 753–756.

    CAS  Google Scholar 

  216. Mukai, K., Sawada, K., Kohno, Y., and Terao, J. (1993) Kinetic Study of the Prooxidant Effect of Tocopherol. Hydrogen Abstraction from Lipid Hydroperoxides by Tocopheroxyls in Solution,Lipids 28, 747–752.

    CAS  Google Scholar 

  217. Bowry, V.W., Ingold, K.U., and Stocker, R. (1992) Vitamin E in Human Low-Density Lipoprotein,Biochem. J. 288, 341–344.

    PubMed  CAS  Google Scholar 

  218. Bowry, V.W., and Stocker, R. (1993) Tocopherol-Mediated Peroxidation: The Prooxidant Effect of Vitamin E on the Radical-Initiated Oxidation of Human Low-Density Lipoprotein,J. Am. Chem. Soc. 115, 6029–6044.

    Article  CAS  Google Scholar 

  219. Ingold, K.U., Bowry, V.W., Stocker, R., and Walling, C. (1993) Autoxidation of Lipids and Antioxidation by α-Tocopherol and Ubiquinol in Homogeneous Solution and in Aqueous Dispersions of Lipids: Unrecognized Consequences of Lipid Particle Size as Examined by Oxidation of Human Low Density Lipoprotein,Proc. Natl Acad. Sci. USA 90, 45–49.

    Article  PubMed  CAS  Google Scholar 

  220. Hicks, M., and Gebicki, J.M. (1981) Inhibition of Peroxidation in Linoleic Acid Membranes by Nitroxide Radicals, Butylated Hydroxy Toluene and α-Tocopherol,Arch. Biochem. Biophys. 210, 56–63.

    Article  PubMed  CAS  Google Scholar 

  221. Martemianov, V.S., Denisov, E.T., and Samoilova, L.A. (1972)Izv. Akad. Nauk SSSR, Ser. Khim, 1039.

  222. Grunger, E.H., and Tappel, A.L. (1970) Reactions of Biological Antioxidants. I. Fe(III)-Catalyzed Reactions of Lipid Hydroperoxides with alpha-Tocopherol,Lipids 5, 326–331.

    Google Scholar 

  223. Igarashi, O., Matsukawa, H., and Ingaki, C. (1976) Reactivity of alpha-Tocopherol with Hydroperoxide of Methyl Linoleate,J. Nutr. Sci. Vitaminol. 22, 267–270.

    PubMed  CAS  Google Scholar 

  224. Fukuzawa, K., and Fujii, T. (1992) Peroxide Dependent and Independent Lipid Peroxidation: Site-Specific Mechanisms of Initation by Chelated Iron and Inhibition by α-Tocopherol,Lipids 27, 227–233.

    PubMed  CAS  Google Scholar 

  225. Minoti, G., and Aust, S.D. (1992) Redox Cycling of Iron and Lipid Peroxidation,Lipids 27, 219–226.

    Google Scholar 

  226. Cort, W.M., Mergens, W., and Greene, A. (1978) Stability of α- and γ-Tocopherol: Fe3+ and Cu2+ Interactions,J. Food Sci. 43, 797–798.

    Article  CAS  Google Scholar 

  227. Willson, R.L. (1979) Hydroxyl Radicals and Biological Damagein vitro: What Relevancein vivo?, inOxygen Free Radicals and Tissue Damage (Ciba Foundation Symposium 65), pp. 19–42, Excerpta Medica, Amesterdam.

    Google Scholar 

  228. Doba, T., Burton, G.W., Ingold, K.U., and Matsu, M. (1984) α-Tocopherol Decay: Lack of Effect of Oxygen,J. Chem. Soc. Chem. Commun. 461–462.

  229. Kornhurst, O.J., and Mavis, R.D. (1979) Microsomal Lipid Peroxidation: Characterization of the Role of Iron and NADPH,Mol. Pharmacol. 17, 400–407.

    Google Scholar 

  230. Peers, K.E., and Coxon, D.T. (1983) Controlled Synthesis of Monohydroperoxides by α-Tocopherol Inhibited Autoxidation of Polyunsaturated Lipids,Chem. Phys. Lipids 32, 49–56.

    Article  CAS  Google Scholar 

  231. Peers, K.E., Coxon, D.T., and Chan, H.-W.-S. (1981) Autoxidation of Methyl Linolenate and Methyl Linoleate: The Effect of α-Tocopherol,J. Sci. Food. Agric. 32, 898–904.

    Article  CAS  Google Scholar 

  232. Loury, M., Bloch, R., and Francois, R. (1966) Use of Tocopherol as an Antioxidant in Fats,Rev. Fr. Corp. Gras 13, 747–752.

    CAS  Google Scholar 

  233. Terao, J., and Matsushita, S. (1986) The Peroxidizing Effect of α-Tocopherol on Autoxidation of Methyl Linoleate in Bulk Phase,Lipids 21, 255–260.

    CAS  Google Scholar 

  234. Buettner, G.R. (1993) The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol and Ascorbate,Arch. Biochem. Biophys. 300, 535–543.

    Article  PubMed  CAS  Google Scholar 

  235. Kanner, J., and Mendel, H. (1979) Pro-Oxidant and Antioxidant Effects of Ascorbic Acid and Metal Salts in a β-Carotene-Linoleate Model System,J. Food. Sci. 42, 60–64.

    Article  Google Scholar 

  236. Nishina, A., Sakurai, Y., Hashimoto, K.-I., Isoda, Y., and Inatomi, H. (1992) Effect of Tocopherols on the Peroxidative Kinetics of Ethyl Eicosapentaenoate and Methyl Linoleate,Biosci. Biotech. Biochem. 56, 2060–2061.

    CAS  Google Scholar 

  237. Toth, B., and Patil, K. (1983) Enhancing Effect of Vitamin E on Murine Intestinal Tumerogenesis by 1,2-Dimethylhydrazine Dihydrochloride,J. Natl. Cancer. Inst. 70, 1107–1111.

    PubMed  CAS  Google Scholar 

  238. Ikeda, N., and Fukuzumi, K. (1977) Synergistic Antioxidant Effect of Nucleic Acids and Tocopherols,J. Am. Oil. Chem. Soc. 54, 360–366.

    PubMed  CAS  Google Scholar 

  239. Budowski, P., and Sklan, D. (1989) Vitamin E and A, inThe Role of Fats in Human Nutrition (Vergroesen, A.J., and Grawford, M., ess.) pp. 363–406, Academic Press Ltd., London.

    Google Scholar 

  240. Govind Rao, M.K., and Achaya, K.T. (1967) Role of Tocopherol as an Antioxidant in Safflower Oil,Fette Seifen Anstrichm. 69, 711–714.

    Google Scholar 

  241. Kovats, T.K., and Berndorfer-Kraszner, E. (1968) On the Antioxidative Mechanisms of alpha-, beta-, gamma-, and delta-Tocopherols in Lard,Nahrung 12, 407–414.

    Google Scholar 

  242. Marinova, E.M., and Yanishlieva, N.V. (1992) Effect of Temperature on the Antioxidative Action of Inhibitors in Lipid Autoxidation,J. Sci. Food Agric. 60, 313–318.

    Article  CAS  Google Scholar 

  243. Saucy, F., Ducret, F., Lambelet, P., and Löliger, J. (1990) The Fate of Antioxidant Radicals During Lipid Autoxidation. II. The Influence of Oxygen Supply on Lipid Autooxidation,Chem. Phys. Lipids 55, 215–221.

    Article  CAS  Google Scholar 

  244. Warner, K. (1993) Effects of Adding Various Tocopherol Ratios on the Stability of Purified Vegetable Oils,INFORM 4, 529.

    Google Scholar 

  245. Cort, W.M. (1974) Antioxidant Activity of Tocopherols, Ascorbyl Palmitate, and Ascorbic Acid and Their Mode of Action,J. Am. Oil Chem. Soc. 51, 321–325.

    PubMed  CAS  Google Scholar 

  246. Yuki, E., and Ishikawa, Y. (1976) Tocopherol Content of Nine Vegetable Frying Oils and Their Changes Under Stimulated Deep-Fat Frying Conditions,J. Am. Oil Chem. Soc. 53, 673–376.

    PubMed  CAS  Google Scholar 

  247. Dugan, L.R., and Kraybill, H.R. (1956) Tocopherols as Carry-through Antioxidants,J. Am. Oil Chem. Soc. 33, 527–528.

    CAS  Google Scholar 

  248. Porter, W.L., Black, E.D., and Drolet, A.M. (1989) Use of Polyamide Oxidative Fluorescence Test on Lipid Emulsions: Contrast in Relative Effectiveness of Antioxidants in Bulk Versus Dispersed Systems,J. Agric. Food Chem. 37, 615–624.

    Article  CAS  Google Scholar 

  249. Porter, W.L. (1993) Paradoxial Behaviour of Antioxidants in Food and Biological Systems,Toxicol. Ind. Health 9, 93–122.

    PubMed  CAS  Google Scholar 

  250. Takahashi, M., Tsuchiya, J., and Niki, E. (1989) Scavenging of Radicals by Vitamin E in the Membranes as Studied by Spin Labelling,J. Am. Chem. Soc. 111, 6350–6353.

    Article  CAS  Google Scholar 

  251. Frankel, E.N., Huang, S.-W., Kanner, J., and German, J.B. (1994) Interfacial Phenomena in the Evaluation of Antioxidants: Bulk Oils Versus Emulsions,J. Agric. Food Chem. 42, 1054–1059.

    Article  CAS  Google Scholar 

  252. Pryor, W.A., Strickland, T., and Church, D.F. (1988) Comparison of the Efficiencies of Several Natural and Synthetic Antioxidants in Aqueous Sodium Dodecyl Sulfate Micelle Solutions,J. Am. Chem. Soc. 110, 2224–2229.

    Article  CAS  Google Scholar 

  253. Castle, L., and Perkins, M.J. (1986) Inhibition Kinetics of Chain-Breaking Phenolic Antioxidants in SDS Micelles. Evidence That Intermicellar Diffusion Rates May Be Rate-Limiting for Hydrophobic Inhibitors Such as α-Tocopherol,J. Am. Chem. Soc. 108, 6381–6382.

    Article  CAS  Google Scholar 

  254. Cillard, J., and Cillard, P. (1980) Behavior of alpha, gamma, and delta Tocopherols with Linoleic Acid in Aqueous Media,J. Am. Oil Chem. Soc. 57, 39–42.

    CAS  Google Scholar 

  255. Iwatsuki, M., Tsuchiya, J., Komuro, E., Yamamoto, Y., and Niki, E. (1994) Effects of Solvents and Media on the Antioxidant Activity of α-Tocopherol,Biochim. Biophys. Acta 1200, 19–26.

    PubMed  CAS  Google Scholar 

  256. O'Brien, P.J. (1969) Intracellular Mechanisms for the Decomposition of a Lipid Peroxide. I. Decomposition of a Lipid Peroxide by Metal Ions, Heme Compounds and Nucleophiles,Can. J. Biochem. 47, 485–492.

    PubMed  Google Scholar 

  257. Chen, H., Lee, D.J., and Schanus, E.G. (1992) The Inhibitory Effect of Water on the Co2+ and Cu2+-Catalyzed Decomposition of Methyl Linoleate Hydroperoxides,Lipids 27, 234–239.

    PubMed  CAS  Google Scholar 

  258. Simic, M.G. (1980) Kinetic and Mechanistic Studies of Peroxy, Vitamin E and Antioxidant Free Radicals by Pulse Radiolysis, inAutoxidation in Food and Biological Systems (Simic, M.G., and Karel, M., eds.), pp. 17–26, Plenum Press, New York.

    Google Scholar 

  259. Lambelet, P., Saucy, F., and Löliger, J. (1984) Radical Exchange Reactions Between Vitamin E, Vitamin C and Phosphatides in Autoxidizing Polyunsaturated Lipids,Free Radic. Res. 20, 1–10.

    Article  Google Scholar 

  260. Gardner, H.W., Kleiman, R., Weisleder, D., and Inglett, G.E. (1977) Cysteine Adds to Lipid Hydroperoxides,Lipids 12, 655–660.

    PubMed  CAS  Google Scholar 

  261. Sims, R.J., and Fioriti, J.A. (1977) Methional as an Antioxidant for Vegetable Oils,J. Am. Oil Chem. Soc., 54, 4–7.

    CAS  Google Scholar 

  262. Terao, J., Yamauchi, R., Murkami, H., and Matsushita, S. (1980) Inhibitory Effects of Tocopherols and β-Carotene on Singlet Oxygen-Initiated Photooxidation of Methyl Linoleate and Soybean Oil,J. Food Process Preserv. 4, 79–93.

    CAS  Google Scholar 

  263. Burton, G.W., and Ingold, K.U. (1984) β-Carotene: An Unsual Type of Antioxidant,Science 224, 569–573.

    Article  PubMed  CAS  Google Scholar 

  264. Kennedy, T.A., and Leibler, D.C. (1992) Peroxy Radical Scavenging by β-Carotene in Lipid Bilayers: Effect of Oxygen Partial Pressure,J. Biol. Chem. 267, 4658–4663.

    PubMed  CAS  Google Scholar 

  265. Golumbic, C., and Matill, H.A. (1941) Antioxidants and the Autoxidation of Fats. XIII. The Antioxygenic Action of Ascorbic Acid in Association with Tocopherols, Hydroquinones and Related Compounds,J. Am. Chem. Soc. 63, 1279–1280.

    Article  CAS  Google Scholar 

  266. Niki, F. (1980) Synergistic Inhibition of Oxidations by Vitamins E and C, inCellular Antioxidant Defence Mechanisms (Chow, C.K. ed.) pp. 111–122, CRC, Boca Raton.

    Google Scholar 

  267. Niki, E., Tsuchiya, J., Tanimura, R., and Kamiya, Y. (1982). Regeneration of Vitamin E from α-Chromanoxyl Radical by Glutathione and Vitamin C,Chem. Lett. 789–792.

  268. Niki, E., Saito, M., Kawakami, A., and Kamiya, Y. (1984) Inhibition of Oxidation of Methyl Linoleate by Vitamin E and Vitamin C,J. Biol. Chem. 259, 4177–4182.

    PubMed  CAS  Google Scholar 

  269. Niki, E., Kawakimi, A., Yamamoto, Y., and Kamiya, Y. (1985) Synergistic Inhibition of Oxidation of Soybean Phosphatidyl Choline Liposomes in Aqueous Dispersion by Vitamin E and Vitamin C,Bull. Chem. Soc. Japan 58, 1971–1975.

    Article  CAS  Google Scholar 

  270. Leung, H.W., Vang, M.J., and Mavis, R.D. (1981) The Cooperative Interaction Between Vitamin E and Vitamin C in Suppression of Peroxidation of Membrane Phospholipids,Biochim. Biophys. Acta 664, 266–272.

    PubMed  CAS  Google Scholar 

  271. Barclay, L.R.C., Locke, S.J., and MacNeil, J.M. (1983) The Autoxidation of Unsaturated Lipids in Micelles, Synergism of Inhibitors: Vitamins C and E,Can. J. Chem. 61, 1288–1290.

    Article  CAS  Google Scholar 

  272. Barclay, L.R.C., Locke, S.J., and MacNeil, J.M. (1985) The Autoxidation of Unsaturated Lipids in Micelles, Synergism of Vitamin C with Lipid-Soluble Vitamin E and Water-Soluble Trolox,Can. J. Chem. 63, 366–374.

    Article  CAS  Google Scholar 

  273. Bascetta, E., Gunstone, F.D., and Watton, J.C. (1983) Electron Spin Resonance Study of the Role of Vitamin E and Vitamin C in the Inhibition of Fatty Acid Oxidation in a Model Membrane,Chem. Phys. Lipids 33, 207–210.

    Article  PubMed  CAS  Google Scholar 

  274. Doba, T., Burton, G.W., and Ingold, K.U. (1985) Antioxidant and Co-Antioxidant Effect of Vitamin C. The Effect of Vitamin C Either Alone Or in the Presence of Vitamin E or a Water-Soluble Vitamin E Analogue, upon the Peroxidation of Aqueous Multi-Lamellar Phospholipid Liposomes,Biochim. Biophys. Acta 835, 298–303.

    PubMed  CAS  Google Scholar 

  275. Lambelet, P., Saucy, F., and Löliger, J. (1985) Chemical Evidence for Interaction Between Vitamins E and C,Experientia 41, 1384–1388.

    Article  PubMed  CAS  Google Scholar 

  276. McCay, P.B. (1985) Vitamin E: Interactions with Free Radicals and Ascorbate,Ann. Rev. Nutr. 5, 323–340.

    Article  CAS  Google Scholar 

  277. Löliger, J., Lambelet, P., Savoy, M.-C., and Ducret, F. (1986) Radical Exchange Between Autoxidizing Lipids, Vitamin E and Vitamin C in Binary Lipid/Water Systems,Fette Seifen Anstrichm. 88, 584–588.

    Article  Google Scholar 

  278. Niki, E. (1987) Interaction of Ascorbate and α-Tocopherol,Ann. N.Y. Acad. Sci. 498, 186–199.

    PubMed  CAS  Google Scholar 

  279. Nijus, D., and Kelley, P.M. (1991) Vitamins C and E Donate Single Hydrogen Atomsin vivo, FEBS Lett. 284, 147–151.

    Article  Google Scholar 

  280. Scarpa, M., Rigo, A., Maisorino, M., Ursini, F., and Gregolinn, C. (1984) Formation of α-Tocopherol Radical and Recycling of α-Tocopherol by Ascorbic Acid During Peroxidation of Phosphatidyl Choline Liposomes: An Electron Paramagnetic Resonance Study,Biochim. Biophys. Acta 801, 215–219.

    PubMed  CAS  Google Scholar 

  281. Sharma, M., and Buettner, G.R. (1993) Interaction of Vitamin C and Vitamin E During the Free Radical Stress in Plasma: An ESR Study,Free Radic. Biol. Med. 14, 649–653.

    Article  PubMed  CAS  Google Scholar 

  282. Yi, O.-S., Han, D., and Shin, H.-K. (1991) Synergistic Antioxidative Effects of Tocopherol and Ascorbic Acid in Fish Oil/Lecithin/Water system,J. Am. Oil Chem. Soc. 68, 881–883.

    CAS  Google Scholar 

  283. Wayner, D.D.M., Burton, G.W., Ingold, K.U., Barklay, L.R.C., and Locke, S.J. (1987) The Relative Contributions of Vitamin E, Urate, Ascorbate and Proteins to the Total Peroxy Radical Trapping Antioxidant Activity of Human Blood Plasma,Biochim. Biophys. Acta 924, 408–419.

    PubMed  CAS  Google Scholar 

  284. Ha, K.H., and Igarashi, O. (1988). Disappearance and Interrelationship of Tocopherol Analogues During Autoxidation of Corn Oil and Synergistic Effect ofl-Ascorbyl Palmitate with α-Tocopherol,Japan J. Food Sci. Technol. 35, 464–470.

    CAS  Google Scholar 

  285. Han, D., Yi, O.-S., and Shin, H.K. (1991) Solubilization of Vitamin C in Fish Oil and Synergistic Effect with Vitamin E in Retarding Oxidation,J. Am. Oil Chem. Soc. 68, 740–743.

    CAS  Google Scholar 

  286. Wang, X.C., and Grodon, M.H. (1993) Antioxidant Synergy Between Phosphatidylethanolamine and α-Tocopherylquinone,Food Chem. 48, 165–168.

    Article  Google Scholar 

  287. Buettner, G.R. (1993b) Ascorbate Autoxidation in the Presence of Iron and Copper Chelates,Free Radic. Res. Commun. 1, 349–353.

    Google Scholar 

  288. Evans, C.D., Cooney, P.M., Scholfield, C.R., and Dutton, H.J. (1954) Soybean “Lecithin” and Its Fractions as Metal-Inactivating Agents,J. Am. Oil Chem. Soc. 31, 295–297.

    CAS  Google Scholar 

  289. Hildebrand, D.H., Jerao, J., and Kito, M. (1984) Phospholipids Plus Tocopherols Increase Soybean Oil Stability,J. Am. Oil Chem. Soc. 61, 552–555.

    CAS  Google Scholar 

  290. Hudson, B.J.F., and Mahgoub, S.E.O. (1981) Synergism Between Phospholipids and Naturally Occuring Antioxidants in Leaf Lipids,J. Sci. Food Agric. 32, 208–210.

    Article  CAS  Google Scholar 

  291. Hudson, B.J.F., and Ghavami, M. (1984) Phospholipids as Antioxidant Synergists for Tocopherols in the Autoxidation of Edible Oils,Lebensm.-Wiss. u.-Technol. 17, 191–194.

    CAS  Google Scholar 

  292. Dziedzic, S.Z., and Hudson, B.J.F. (1984) Phosphatidyl Ethanolamine As a Synergist for Primary Antioxidants in Edible Oils,J. Am. Oil Chem. Soc. 61, 1042–1045.

    CAS  Google Scholar 

  293. Bazin, B., Cillard, J., Koskas, J.-P., and Cillard, P. (1984) Arachidonic Acid Autoxidation in an Aqueous Media: Effect of α-Tocopherol, Cysteine and Nucleic Acids,J. Am. Oil Chem. Soc. 61, 1212–1215.

    CAS  Google Scholar 

  294. Hamzawi, L.F. (1990) Role of Phospholipids and α-Tocopherol as Natural Antioxidants in Buffalo Butter Fat,Michwissenschaft 45, 95–97.

    CAS  Google Scholar 

  295. Szuhaj, B.F., and Sipos, E.F. (1989) Flavor Chemistry of Phospholipids, inFlavor Chemistry of Lipid Foods (Min, D.B., and Smouse, T.H., eds.) pp. 265–288, American Oil Chemists' Society, Champaign.

    Google Scholar 

  296. Linow, F., and Mieth, G. (1976) The Fat-Stabilizing Properties of Phosphatides. III. The Synergistic Action of Selected Phosphatides,Nahrung 20, 19–24.

    PubMed  CAS  Google Scholar 

  297. Yee, J.J., and Shipe, W.F. (1981) Using Enzymatic Proteolysis to Reduce Copper-Protein Catalysis of Lipid Oxidation,J. Food Sci. 46, 966–967.

    Article  CAS  Google Scholar 

  298. Riisom, T., Sims, R.J., and Fioriti, J.A. (1980) Effect of Amino Acids on the Autoxidation of Safflower Oil in Emulsions,J. Am. Oil Chem. Soc. 57, 354–359.

    CAS  Google Scholar 

  299. Bishov, S.J., and Henick, A.S. (1972) Antioxidant Effect of Protein Hydrolyzates in a Freeze-Dried Model System,J. Food Sci. 37, 873–875.

    Article  CAS  Google Scholar 

  300. Yuki, E., Ishikawa, Y., and Yoshiwa, T. (1974) Antioxidative Activities of Amino Acids and Their Esters Under Various Conditions,J. Japan Oil Chem. Soc. 23, 497–500.

    CAS  Google Scholar 

  301. Yamagushi, N., and Fujimaki, M. (1974) Browning Reaction Products from Reducing Sugars and Amino Acids. XV. Comparison of Antioxidative Activity of Melanoidin with That of Tocopherol Homologues and the Synergistic Effect of Melanoidin with Tocopherols,Japan J. Food Sci. Technol. 21, 13–18.

    Google Scholar 

  302. El-Zeany, B.A., Janicek, G., and Pokorny, J. (1973) inProc. 3rd Symp. on Metal-Catalyzed Lipid Oxidation, pp. 177–183, Sept. 27–30, 1973, Institut des Corps Gras, Paris.

    Google Scholar 

  303. Kago, T., and Terao, J. (1995) Phospholipids Increase Radical Scavenging Activity of Vitamin E in a Bulk Oil Model System,J. Agric. Food Chem. 43, 1450–1454.

    Article  Google Scholar 

  304. Frankel, E.N., and Gardner, H.W. (1989) Effect of α-Tocopherol on the Volatile Thermal Decomposition Products of Methyl Linoleate Hydroperoxides,Lipids 24, 603–608.

    PubMed  CAS  Google Scholar 

  305. Chan, H.W.S., and Levett, G. (1977) Autoxidation of Methyl Linolenate: Analysis of Methyl Hydrolinolenate Isomers by High-Performance Liquid Chromatography,Lipids 12, 837–840.

    CAS  Google Scholar 

  306. Chan, H.W.-S., Levett, G., and Matthew, J.A. (1979) The Mechanism of the Rearrangement of Linoleate Hydroperoxides,Chem. Phys. Lipids 24, 245–256.

    Article  CAS  Google Scholar 

  307. Porter, N.A., Weber, B.A., Weenen, H., and Khan, J.A. (1980) Autoxidation of Polyunsaturated Lipids: Factors Controlling the Stereochemistry of Product Hydroperoxides,J. Am. Chem. Soc. 102, 5597–5601.

    Article  CAS  Google Scholar 

  308. Neff, W.E., Frankel, E.N., and Weisleder, D. (1981) High-Pressure Liquid Chromatography of Autoxidized Lipids. II. Hydroperoxy Cyclic Peroxides and Other Secondary Products from Methyl Linolenate,Lipids 16, 439–448.

    CAS  Google Scholar 

  309. Coxon, D.T., Price, K.R., and Chan, H.W.-S. (1981) Formation, Isolation and Structural Determination of Methyl Linolenate Hydroperoxides,Chem. Phys. Lipids 28, 365–378.

    Article  CAS  Google Scholar 

  310. Coxon, D.T., Peers, K.E., and Rigby, N.M. (1984) Selective Formation of Dihydroperoxidesin the α-Tocopherol Inhibited Autoxidation of Methyl Linolenate,J. Chem. Soc. Chem. Commun: 67–68.

  311. Yamagata, S., Murakami, H., Terao, J., and Matsushita, S. (1983) Non-Enzymatic Oxidation Products of Methyl Arachidonate,Agric. Biol. Chem. 47, 2791–2799.

    CAS  Google Scholar 

  312. Mergens, W.J. (1992) Tocopherol: Natural Phenolic Inhibitor of Nitrosation, inPhenolic Compounds in Food and Their Effects on Health, Vol. 2: Antioxidants and Cancer Prevention (Ho, C.-T., Lee, C.Y. and Huang, M.-T., eds.) pp. 350–366, ACS Ser 507, Washington D.C.

  313. Pignatelli, B., Friesen, M., and Walker, E.A. (1980) The Role of Phenols in Catalysis of Nitrosamine Formation,IARC Sci. Pub. (Lyon)31, 95–105.

    CAS  Google Scholar 

  314. Kurechi, T., Kikugawa, K., and Kato, T. (1979) C-Nitrosation of Sesamol and Its Effects onN-Nitrosamine Formationin vitro, Chem. Pharm. Bull. 27, 2442–2449.

    CAS  Google Scholar 

  315. Kamm, J.J., Dashman, T., Newmark, H., and Mergens, W.J. (1977) Inhibition of Amine-Nitrite Hepatotoxicity by α-Tocopherol,Toxicol. Appl. Pharm. 41, 575–583.

    Article  CAS  Google Scholar 

  316. Lathia, D., and Blum, A. (1989) Role of Vitamin E as Nitrite Scavenger andN-Nitrosamine Inhibitor: A Review,Int. J. Vit. Nutr. Res. 59, 430–438.

    CAS  Google Scholar 

  317. Davies, R., and McWeeny, D.J. (1977) Catalytic Effect of Nitrosophenols onN-Nitrosamine Formation,Nature 266, 657–658.

    Article  PubMed  CAS  Google Scholar 

  318. Davies, R., Dennis, M.J., Massey, R.C., and McWeeny, D.J. (1978) Some Effects of Phenol- and Thiol-Nitrosation Reactions onN-Nitrosamine Formation, inEnvironmental Aspects of N-Nitrosocompounds (Walker, E.A., Castegnaro, M., Griciute, L. and Lyle, R.E., eds.) Vol. 19, pp. 183–199, IARC Scientific Publications, Lyon.

    Google Scholar 

  319. Davies, R., Massey, R.C., and McWeeny, D.J. (1980) The Catalysis of TheN-Nitrosation of Secondary Amines by Nitrosophenols.Food Chem. 6, 115–122.

    Article  CAS  Google Scholar 

  320. Tannenbaum, S.R., and Mergens, W. (1980) Reaction of Nitrite with Vitamins C and E,Ann. N.Y. Acad. Sci. 355, 267–277.

    PubMed  CAS  Google Scholar 

  321. Janzen, E.G., Wilcox, A.L., and Monoharan, V. (1993) Reactions of Nitric Oxide with Phenolic Antioxidants and Phenoxyl Radicals,J. Org. Chem. 58, 3597–3599.

    Article  CAS  Google Scholar 

  322. Cooney, R.V., and Ross, P.D. (1987)N-Nitosation andN-Nitration of Morpholine by Nitrogen Dioxide in Aqueous Solution: Effects of Vanillin and Related Phenols,J. Agric. Food Chem. 35, 789–793.

    Article  CAS  Google Scholar 

  323. Cooney, R.V., Franke, A.A., Harwood, P.J., Hatch-Pigott, V., Custer, L.J., and Mordan, L.J. (1993) γ-Tocopherol Detoxification of Nitrogen Dioxide: Superiority to α-Tocopherol,Proc. Natl. Acad. Sci. USA 90, 1771–1775.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kamal-Eldin, A., Appelqvist, LÅ. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31, 671–701 (1996). https://doi.org/10.1007/BF02522884

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522884

Keywords

Navigation