Threedimensional graph drawing
 R. F. Cohen,
 P. Eades,
 Tao Lin,
 F. Ruskey
 … show all 4 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
Graph drawing research has been mostly oriented toward twodimensional drawings. This paper describes an investigation of fundamental aspects of threedimensional graph drawing. In particular we give three results concerning the space required for threedimensional drawings.
We show how to produce a grid drawing of an arbitrarynvertex graph with all vertices located at integer grid points, in ann×2n×2n grid, such that no pair of edges cross. This grid size is optimal to within a constant. We also show how to convert an orthogonal twodimensional drawing in anH×V integer grid to a threedimensional drawing with \(\left\lceil {\sqrt H } \right\rceil \times \left\lceil {\sqrt H } \right\rceil \times V\) volume. Using this technique we show, for example, that threedimensional drawings of binary trees can be computed with volume \(\left\lceil {\sqrt n } \right\rceil \times \left\lceil {\sqrt n } \right\rceil \times \left\lceil {\log n} \right\rceil \) . We give an algorithm for producing drawings of rooted trees in which thezcoordinate of a node represents the depth of the node in the tree; our algorithm minimizes thefootprint of the drawing, that is, the size of the projection in thexy plane.
Finally, we list significant unsolved problems in algorithms for threedimensional graph drawing.
 G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display in drawing graphs.Proc. ACM Symp. on Computational Geometry, pages 51–60, 1989.
 G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display of planar upward drawings.Discrete and Computational Geometry, 7:381–401, 1992. CrossRef
 J. A. Bondy and U. S. R. Murty.Graph Theory with Applications. NorthHolland, New York, 1976.
 P. Crescenzi, G. Di Battista, and A. Piperno. A. note on optimal area algorithms for upward drawings, of binary trees. Technical Report 11.91, Dipartimento di Informatica e Sistemistica, Univ. di Roma “La Sapienza”, 1991.
 P. Eades, T. Lin, and X. Lin. Minimum size hv drawings. InAdvanced Visual Interfaces (Proceedings of AVI 92, Rome), World Scientific Series in Computer Science, volume 36, pages 386–394, 1992.
 P. Eades, T. Lin, and X. Lin. Two tree drawing conventions.International Journal of Computational Geometry and Applications, 3(2):133–153, 1993. CrossRef
 P. Eades, C. Stirk, and S. Whitesides. The techniques of Kologorov and Barzdin for threedimensional orthogonal graph drawing.Information Processing Letters, to appear.
 J. D. Foley and A. van Dam,Fundamentals of Interactive Computer Graphics, AddisonWesley, Reading, MA, 1982.
 A. Garg, M. T. Goodrich, and R. Tamassia. Areaefficient upward tree drawings.Proc. ACM Symp. on Computational Geometry, pages 359–368, 1993.
 D. Knuth.The Art of Computer Programming. Volume 1:Fundamental Algorithms AddisonWesley, Reading, MA, 1975.
 J. Mackinley, G. Robertson, and S. Card. Cone trees: Animated 3d visualizations of hierarchical information.Proceedings of SIGCHI Conference on Human Factors in Computing, pages 189–194, 1991.
 S. Moen. Drawing dynamic trees.IEEE Software, 7:21–8, 1990. CrossRef
 P. Reid. Dynamic interactive display of complex data structures. InGraphics Tools for Software Engineers, pages 60–62. Cambridge University Press, Cambridge, 1989.
 E. Reingold and J. Tilford. Tidier drawing of trees.IEEE Transactions on Software Engineering 7(2):223–228, 1981.
 R. Tamassia. Planar orthogonal drawings of graphs.Proc. IEEE Internat. Symp. on Circuits and Systems, pages 319–322, 1990.
 W. T. Tutte. Convex representations of graphs.Proceedings London Mathematical Society, 10:304–320, 1960.
 O. Tversky, S. Snibbe, and R. Zeleznik. Cone trees in the uga graphics system: Suggestions of a more robust visualization tool. Technical Report CS9307, Brown University, 1993.
 J. Vaucher. Pretty printing of trees.SoftwarePractice and Experience, 10(7):553–561, 1980.
 J. O. Walker II. A nodepositioning algorithm for general trees.SoftwarePractice and Experience, 20(7):685–705, 1990.
 C. Ware, D. Hui, and G. Franck. Visualizing object oriented software in three dimensions.CASCON 1993Proceedings, 1993.
 C. Wetherell and A. Shannon. Tidy drawing of trees.IEEE Transactions on Software Engineering, 5(5):514–520, 1979.
 N. Wirth.Systematic Programming: An Introduction. PrenticeHall, Englewood Cliffs, NJ, 1973.
 Title
 Threedimensional graph drawing
 Journal

Algorithmica
Volume 17, Issue 2 , pp 199208
 Cover Date
 19970201
 DOI
 10.1007/BF02522826
 Print ISSN
 01784617
 Online ISSN
 14320541
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Keywords

 Graph drawing
 Algorithms
 Threedimensional
 Industry Sectors
 Authors

 R. F. Cohen ^{(1)}
 P. Eades ^{(1)}
 Tao Lin ^{(2)}
 F. Ruskey ^{(3)}
 Author Affiliations

 1. Department of Computer Science, University of Newcastle, University Drive, 2308, Callaghan, New South Wales, Australia
 2. CSIRO DIT, GPO Box 664, 2601, Camberra, ACT, Australia
 3. Department of Computer Science, University of Victoria, V8W 3P6, Victoria, B.C., Canada