, Volume 54, Issue 3-4, pp 179-185

Analysis of vitamin E in food and phytopharmaceutical preparations by HPLC and HPLC-APCI-MS-MS

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

The analysis of α, β, γ, δ-tocopherols, trienols, α-tocopheryl acetate and nicotinate (vitamin E) in complex matrices was carried out using a new liquid chromatographic (HPLC) method giving better separation efficiency, selectivity and sensitivity than that described in the literature. The use of normal-phase (NP)-HPLC on silica gel with issoctane-diisopropylether-1,4-dioxane as optimized mobilepphase yielded higher resolution than conventional reversed-phase (RP)-HPLC using methanol mobile phase. Identification of peaks was by UV-absorbance at 295 nm, diode array, or fluorescence detection (λ ex = 295 nm,λ ex = 330 nm). The latter was found to be more selective and ten times more sensitive than UV-absorbance detection. A quadrupole, ion-trap mass spectrometer with an atmospheric-pressure ionization (APCl) interface was used to detect vitamin E constituents in the femtomole range. With collision-induced dissociation (CID) in the ion source, which gave characteristic fragmentation, the identity of the investigated compounds could be confirmed. Plots of peak area versus amount injected allowed quantitation of α, β, γ, δ-tocopherols and-trienols, α-tocopheryl acetate and nicotinate in real samples such as peanut, almond, spinach, spelt grain bran, latex and tablets. The method described offers fast identification and quantitation of vitamin E constituents of complex biological origin.

Dedicated to Professor Dr. Heinz Engelhardt on the occasion of his 65th birthday.