Skip to main content
Log in

Phylogeny of gymnosperms inferred fromrbcL gene sequences

  • Short Communication
  • Published:
The botanical magazine = Shokubutsu-gaku-zasshi Aims and scope Submit manuscript

Abstract

Partial nucleotide sequences of the large subunit of ribulose-1,5-bisphosphate carboxylase (rubisco) gene (1333 base pairs: about 90% of the gene) from several seed plants were determined. Phylogenetic trees based on amino acid sequences were inferred by using the neighbor joining and maximum likelihood methods. The results indicate (1) monophyly of gnetum group (Ephedra, Gnetum, Welwitschia), (2) monophyly of extant gymnosperms containing gnetum group, which contradicts the results of morphological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adachi, J. andM. Hasegawa. 1992. Programs for molecular phylogenetics, I-PROTML: Maximum likelihood inference of protein phylogeny. Computer Science Monographs, No. 27, MOLPHY Institute of Statistical Mathematics, Tokyo.

    Google Scholar 

  • Chamberlain, C.J. 1935. Gymnosperms, Structure and Evolution. University of Chicago Press, Chicago.

    Google Scholar 

  • Crane, P.R. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann. Missouri Bot. Gard.72: 716–793.

    Article  Google Scholar 

  • — 1988. Major clades and relationships in the “higher” gymnosperms.In C.B. Beck, ed., Origin and Evolution of Gymnosperms, pp. 218–272. Columbia University Press, New York.

    Google Scholar 

  • Doyle, J.A. andM.J. Donoghue. 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot. Rev.52: 321–431.

    Google Scholar 

  • Eames, A.J. 1952. Relationships of the Ephedrales. Phytomorphology2: 79–100.

    Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution39: 783–791.

    Article  Google Scholar 

  • Gifford, E.M. and A.S. Foster. 1988. Morphology and Evolution of Vascular Plants. W.H. Freeman and Company, New York.

    Google Scholar 

  • Golenberg, E.M., D.E. Giannasi, M.T. Clegg, C.J. Smiley, M. Durbin, D. Henderson andG. Zurawski. 1990. Chloroplast DNA sequence from a mioceneMagnolia species. Nature344: 656–658.

    Article  PubMed  CAS  Google Scholar 

  • Hasebe, M., M. Ito, R. Kofuji, K. Iwatsuki, andK. Ueda. 1992. Phylogenetic relationships in Gnetophyta deduced fromrbcL gene sequences. Bot. Mag. Tokyo105: 385–391.

    CAS  Google Scholar 

  • Higgins, D.G. 1991. Clustal V Documentation. EMBL, Heidelberg.

    Google Scholar 

  • Hillis, D.M., C. Moritz, C. Porter, J. Baker. 1991. Evidence for biased gene conversion in ribosomal DNA. Science251: 308–310.

    PubMed  CAS  Google Scholar 

  • Hipkins, V.D., C.-H. Tsai andS.H. Strauss. 1990: Sequence of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase from a gymnosperm, Douglas fir. Plant Mol. Biol.15: 505–507.

    Article  CAS  Google Scholar 

  • Hiratsuka, J., H. Shimada, R.F. Whittier, T. Ishibashi, M. Sakamoto, M. Mori, C. Kondo, Y. Honji, C.R. Sun, B.Y. Meng, Y.Q. Li, A. Kanno, Y. Nishizawa, A. Hirai, K. Shinozaki andM. Sugiura. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet.217: 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Hori, H., B.-L. Lim andS. Osawa. 1985. Evolution of green plants as deduced from 5S rRNA sequences. Proc. Natl. Acad. Sci. USA82: 820–823.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, G.S., J.D. Mahon, P.A. Anderson, M.J. Gibbs, M.R. Badger, T.J. Andrews andP.R. Whitfeld. 1990. Comparisons of rbcL genes for the large subunit of ribulose-bisphosphate carboxylase from closely related C3 and C4 plant species. J. Biol. Chem.265: 808–814.

    PubMed  CAS  Google Scholar 

  • Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kishino, H. andM. Hasegawa. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol.29: 170–179.

    Article  PubMed  CAS  Google Scholar 

  • —,T. Miyata andM. Hasegawa. 1990. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J. Mol. Evol.31: 151–160.

    Article  CAS  Google Scholar 

  • Loconte, H. andW. Stevenson. 1990. Cladistics of the Spermatophyta. Brittona42: 197–211.

    Article  Google Scholar 

  • Meyen, S.V. 1984. Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record. Bot. Rev.50: 1–111.

    Article  Google Scholar 

  • Ohyama, K., H. Fukuzawa, T. Kohchi, H. Shirai, T. Sano, S. Sano, K. Umesono, Y. Shiki, M. Takeuchi, Z. Chang, S. Aota, H. Inokuchi andH. Ozeki. 1986. Chloroplast gene organization deduced from complete sequence of liverwortMarchantia polymorpha chloroplast DNA. Nature322: 572–574.

    Article  CAS  Google Scholar 

  • Palmer, J.D., R.K. Jansen, H.J. Michaels, M.W. Chase andJ. Manhart. 1988. Chloroplast DNA variation and plant phylogeny. Ann. Missouri Bot. Gard.75: 1180–1206.

    Article  Google Scholar 

  • Saitou, N. andM. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4: 406–425.

    PubMed  CAS  Google Scholar 

  • Sambrook, J., E.F. Fritsch andT. Maniatjs. 1989. Molecular Cloning. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Shinozaki, K., M. Ohme, M. Tanaka, T. Wakasugi, N. Hayashida, T. Matsubayashi, N. Zaita, J. Chunwongse, J. Obolata, K. Yamaguchi-Shinozaki, C. Ohta, K. Torazawa, B.Y. Meng, M. Sugita, H. Deno, T. Kamagashira, K. Yamada, J. Kusuda, F. Takaiwa, A. Kato, N. Tohdoh, H. Shimada andM. Sugiura. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J.5: 2043–2049.

    PubMed  CAS  Google Scholar 

  • Steele, K.P., K.E. Holsinger, R.K. Jansen andD.W. Taylor. 1988. Phylogenetic relationships in green plants—a comment on the use of 5S ribosomal RNA sequences by Bremeret al. Taxon37: 135–138.

    Article  Google Scholar 

  • . 1991. Assessing the reliability of 5S rRNA sequence data for phylogenetic analysis in green plants. Mol. Biol. Evol.8: 240–248.

    CAS  Google Scholar 

  • Troitsky, A.V., Yu.F. Melekhovets, G.M. Rakhimova, V.K. Bobrova, K.M. Valiejo-Roman andA.S. Antonov. 1991. Angiosperm origin and early stages of seed plant evolution deduced from rRNA sequence comparisons. J. Mol. Evol.32: 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, W.C. andR.L. Honeycutt. 1988. Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implications. Mol. Biol. Evol.5: 90–96.

    PubMed  CAS  Google Scholar 

  • Yoshinaga, K., Y. Kubota, T. Ishii andK. Wada. 1992. Nucleotide sequences ofatpB,rbcL,trnR,dedB, andpsaI chloroplast genes from a fernAngiopteris lygodiifolia: a possible emergence of spermatophyta lineage before the separation of Bryophyta and Pteridophyta. Pl. Mol. Biol.18: 79–82.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasebe, M., Kofuji, R., Ito, M. et al. Phylogeny of gymnosperms inferred fromrbcL gene sequences. Bot Mag Tokyo 105, 673–679 (1992). https://doi.org/10.1007/BF02489441

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02489441

Key words

Navigation