Acta Mechanica Sinica

, Volume 19, Issue 2, pp 103–117

Flows around two airfoils performing fling and subsequent translation and translation and subsequent clap

  • Sun Mao
  • Yu Xin
Article

DOI: 10.1007/BF02487671

Cite this article as:
Mao, S. & Xin, Y. Acta Mech Sinica (2003) 19: 103. doi:10.1007/BF02487671

Abstract

The aerodynamic forces and flow structures of two airfoils performing “fling and subsequent translation” and “translation and subsequent clap” are studied by numerically solving the Navier-Stokes equations in moving overset grids. These motions are relevant to the flight of very small insects. The Reynolds number, based on the airfoil chord lengthc and the translation velocityU, is 17. It is shown that: (1) For two airfoils performing fling and subsequent translation, a large lift is generated both in the fling phase and in the early part of the translation phase. During the fling phase, a pair of leading edge vortices of large strength is generated; the generation of the vortex pair in a short period results in a large time rate of change of fluid impulse, which explains the large lift in this period. During the early part of the translation, the two leading edge vortices move with the airfoils; the relative movement of the vortices also results in a large time rate of change of fluid impulse, which explains the large lift in this part of motion. (In the later part of the translation, the vorticity in the vortices is diffused and convected into the wake.) The time averaged lift coefficient is approximately 2.4 times as large as that of a single airfoil performing a similar motion. (2) For two airfoils performing translation and subsequent clap, a large lift is generated in the clap phase. During the clap, a pair of trailing edge vortices of large strength are generated; again, the generation of the vortex pair in a short period (which results in a large time rate of change of fluid impulse) is responsible for the large lift in this period. The time averaged lift coefficient is approximately 1.6 times as large as that of a single airfoil performing a similar motion. (3) When the initial distance between the airfoils (in the case of clap, the final distance between the airfoils) varies from 0.1 to 0.2c, the lift on an airfoil decreases only slightly but the torque decreases greatly. When the distance is about 1c, the interference effects between the two airfoils become very small.

Key Words

two airfoils fling translation clap Navier-Stokes simulation 

Copyright information

© Chinese Society of Theoretical and Applied Mechanics 2003

Authors and Affiliations

  • Sun Mao
    • 1
  • Yu Xin
    • 1
  1. 1.Institute of Fluid MechanicsBeijing University of Aeronautics & AstronauticsBeijingChina