Bell, J. L. (1988).*Toposes and Local Set Theories: An Introduction*, Clarendon Press, Oxford.

Butterfield, J. (1995). Words, minds and quantun,*Proceedings of the Aristotelian Society*,**69**, 113–158.

Crane, L. (1995). Clocks and categories: Is quantum gravity algebraic?

*Journal of Mathematical Physics*,

**36**, 6180–6193.

MATHMathSciNetCrossRefADSDowker, H. F., and Kent, A. (1995). Properties of consistent histories.

*Physical Review Letters*,

**75**, 3038–3041.

CrossRefADSDowker, H. F., and Kent, A. (1996). On the consistent histories approach to quantum mechanics,

*Journal of Statistical Physics*,

**82**, 1575–1646.

MATHMathSciNetCrossRefDummett, M. (1959). Truth,*Proceedings of the Aristotelian Society*,**59**, 141–162.

Foulis, D. J., Greechie, R. J., and Rüttimann, G. T. (1992). Filters and supports in orthoalgebras,

*International Journal of Theoretical Physics*,

**31**, 789–807.

MATHMathSciNetCrossRefGell-Mann, M., and Hartle, J. (1990a). Alternative decohering histories in quantum mechanics, in*Proceedings of the 25th International Conference on High Energy Physics, Singapore, August, 1990*, K. K. Phua and Y. Yamaguchi, eds.), World Scientific, Singapore.

Gell-Mann, M., and Hartle, J. (1990b). Quantum mechanics in the light of quantum cosmology, in*Complexity, Entropy and the Physics of Information*, W. Zurek, ed., Addison-Wesley, Reading, Massachusetts.

Goldblatt, R. (1984).*Topoi: The Categorial Analysis of Logic*, North-Holland, Amsterdam.

Griffiths, R. B. (1984) Consistent histories and the interpretation of quantum mechanics,

*Journal of Statistical Physics*,

**36**, 219–272.

MATHMathSciNetCrossRefGriffiths, R. B. (1993).

*Foundations of Physics*,

**23**, 1601.

MathSciNetCrossRefGriffiths, R. B. (1996). Consistent histories and quantum reasoning [quant-ph/9606004].

Halliwell, J. (1995). A review of the decoherent histories approach to quantum mechanics, in*Fundamental Problems in Quantum Theory*, D. M. Greenberger and A. Zeilinger, eds., New York Academy of Sciences, New York.

Hardegree, G. M., and Frazer, P.J. (1982). Charting the labyrinth of quantum logics: A progress report, in*Current Issues in Quantum Logic*, E. G. Beltrametti and B. V. van Frassen, eds., Plenum Press, New York.

Hartle, J. (1991).*The quantum mechanics of cosmology*, in*Quantum Cosmology and Baby Universes*, S. Coleman, J. Hartle, T. Piran, and S. Weinberg, eds. World Scientific, Singapore.

Hartle, J. (1995). Spacetime quantum mechanics and the quantum mechanics of space-time, in*Proceedings of the 1992 Les Houches School, Gravitation and Quantization*, B. Julia and J. Zinn-Justin, eds., Elsevier Science, Amsterdam.

Isham, C. J. (1994). Quantum logic and the histories approach to quantum theory.

*Journal of Mathematical Physics*,

**35**, 2157–2185.

MATHMathSciNetCrossRefADSIsham, C. J. (1995). Quantum logic and decohering histories, in*Topics in Quantum Field Theory*, D. H. Tchrakian, ed., World Scientific, Singapore.

Isham, C. J., and Linden, N. (1994). Quantum temporal logic and decoherence functionals in the histories approach to generalized quantum theory.

*Journal of Mathematical Physics*,

**35**, 5452–5476.

MATHMathSciNetCrossRefADSIsham, C. J., and Linden, N. (1995). Continuous histories and the history group in generalized quantum theory.

*Journal of Mathemtical Physics*,

**36**, 5392–5408.

MATHMathSciNetCrossRefADSIsham, C. J., Linden, N., and Schreckenberg, S. (1994). The classification of decoherence functionals: An analogue of Gleason's theorem,

*Journal of Mathematical Physics*,

**35**, 6360–6370.

MATHMathSciNetCrossRefADSKent, A. (1996). Consistent sets contradict [gr-qc/9604012].

Kripke, S. (1963). Semantical considerations on modal logic,

*Acta Philosophica Fennica*,

**16**, 83–94.

MATHMathSciNetLawvere, F. W. (1975). Continuously varible sets: Algebraic geometry=geometric logic, in*Proceedings Logic Colloquium Bristol 1973*, North-Holland, Amsterdam.

Loux, M. J. (1979).*The Possible and the Actual*, Cornell University Press, Ithaca, New York.

MacLane, S., and Moerdijk, I. (1992).*Sheaves in Geometry and Logic: A First Introduction to Topos Theory*, Springer-Verlag, Berlin.

Omnès, R. (1988a). Logical reformulation of quantum mechanics. I. Foundations,

*Journal of statistical Physics*,

**53**, 893–932.

MATHMathSciNetCrossRefOmnès, R. (1988b). Logical reformulation of quantum mechanics. II. Interferences and the Einstein-Podolsky-Rosen experiment,

*Journal of Statistical Physics*,

**53**, 933–955.

MathSciNetCrossRefOmnès, R. (1988c). Logical reformulation of quantum mechanics. III. Classical limit and irreversibility,

*Journal of Statistical Physics*,

**53**, 957–975.

MathSciNetCrossRefOmnès, R. (1989). Logical reformulation of quantum mechanics. IV. Projectors in semiclassical physics.

*Journal of Statistical Physics*,

**57**, 357–382.

MathSciNetCrossRefOmnès, R. (1990). From Hilbert spaceto common sense: A synthesis of recent progress in the interpretation of quantum mechanics,

*Annals of Physics*,

**201**, 354–447.

MathSciNetCrossRefADSOmnès, R. (1992). Consistent interpretations of quantum mechanics,

*Reviews of Modern Physics*,

**64**, 339–382.

MathSciNetCrossRefADSRovelli, C. (1996). Relational quantum theory,*International Journal of Theoretical Physics*, in press.

Smolin, L. (1995). The Bekenstein bound, topological quantum field theory, and pluralistic quantum cosmology [gr-qc/9508064].

Wittgenstein, L. (1966).*Tractatus Logico-Philosophicus*, Routledge & Kegan Paul, London.