[1]

H. Arndt, Numerical solution of retarded initial value problems: local and global error and stepsize control, Numer. Math. 43 (1984) 343–360.

MATHCrossRefMathSciNet[2]

H. Arndt, P.J. van der Houwen and B.P. Sommeijer, Numerical interpolation of retarded differential equations,*Delay Equations: Approximation, Theory and Applications*, ISNM 72 (Birkhäuser, 1985) pp. 41–51.

[3]

M. Artola, Equations paraboliques à retardment, C.R. Acad. Sci. Paris 264 (1967) 668–671.

MATHMathSciNet[4]

S. Arunsawatwong and V. Zakian,*I*
_{MN} recursions for long sequences of linear delay differential equations, Control Systems Centre report 791, UMIST, Manchester (1993).

[5]

U.M. Ascher and L.R. Petzold, The numerical solution of delay-differential-algebraic equations of retarded and neutral type, SIAM J. Numer, Anal., to appear.

[6]

G. Bader, Ein Mehrschrittverfahren mit variabler Schrittweite und variabler Ordnung zur Intergration von Systemen retardierter Differentialgleichungen mit zustandsabhängiger Verzögerung, Diplomarbeit Universität Heidelberg (1983).

[7]

C.T.H. Baker, Propositions on the robustness of multistep formulae, Technical Report No. 244, University of Manchester (1994). J. Numer, Func. Anal. Optim., to appear.

[8]

C.T.H. Baker, Dynamics of discretized equations for DDEs,*Proc. HERMIS '94 Conf.*, Athens University of Economics and Business (Sept. 1994).

[9]

C.T.H. Baker and C.A.H. Paul, Computing stability regions — Runge — Kutta methods for delay differential equations, IMA J. Numer. Anal. 14 (1994) 347–362.

MATHCrossRefMathSciNet[10]

C.T.H. Baker and C.A.H. Paul, Parallel continuous Runge—Kutta methods and vanishing lag delay differential equations, Adv. Comp. Math. 1 (1993) 367–394.

MATHCrossRefMathSciNet[11]

C.T.H. Baker and C.A.H. Paul, A global convergence theorem for a class of parallel continuous explicit Runge—Kutta methods and vanishing lag delay differential equations, Technical Report No. 229, University of Manchester (1993); SIAM J. Numer. Anal. (1996), to appear.

[12]

C.T.H. Baker, C.A.H. Paul and D.R. Willé, A bibliography on the numerical solution of delay differential equations, Technical Report, University of Manchester, in preparation.

[13]

C.T.H. Baker, J.C. Butcher and C.A.H. Paul, Experience of STRIDE applied to delay differential equations, Technical Report No. 208, University of Manchester (1992).

[14]

H.T. Banks and F. Kappel, Spline approximations for functional differential equations, J. Diff. Eqns. 34 (1979) 496–522.

MATHCrossRefMathSciNet[15]

V.K. Barwell, Special stability problems for functional differential equations, BIT 15 (1975) 130–135.

MATHCrossRefMathSciNet[16]

A. Bellen, One-step collocation for delay differential equations, J. Comp. Appl. Math. 10 (1984) 275–283.

MATHCrossRefMathSciNet[17]

A. Bellen and M. Zennaro, Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method, Numer. Math. 47 (1985) 301–316.

MATHCrossRefMathSciNet[18]

R.E. Bellman and K.L. Cooke,*Differential-Difference Equations*, Mathematics in Science and Engineering 6 (Academic Press, 1963).

[19]

R.E. Bellman and J.M. Danskin, A survey of the mathematical theory of time-lag, retarded control, and hereditary processes, R-256, The Rand Corporation, Santa Monica (1954).

[20]

R.E. Bellman, J.D. Buell and R.E. Kalaba, Mathematical experimentation in time-lag modulation, Commun. ACM 9 (1966) 752–753.

CrossRef[21]

R.E. Bellman, J.D. Buell and R.E. Kalaba, Numerical integration of a differential-difference equation with a decreasing time-lag. Commun. ACM 8 (1965) 227–228.

MATHCrossRefMathSciNet[22]

H.G. Bock and J.P. Schlöder, Numerical solution of retarded differential equations with state-dependent time lags. Z. angew. Math. Mech. 61 (1981) 269–271.

[23]

U. Buchacker and S. Filippi, Stepsize control for delay differential equations using a pair of Runge-Kutta formulae. J. Comp. Appl. Math. 26 (1989) 339–343.

MATHCrossRefMathSciNet[24]

K. Burrage,*Parallel and Sequential Methods for Ordinary Differential Equations* (OUP, 1995).

[25]

K. Burrage, J.C. Butcher and F.H. Chipman, An implementation of singly-implicit Runge-Kutta methods, BIT 20 (1980) 326–340.

MATHCrossRefMathSciNet[26]

J.C. Butcher, The adaptation of STRIDE to delay differential equations, Appl. Numer. Math. 9 (1992) 415–425.

MATHCrossRefMathSciNet[27]

J. Carr, The asymptotic behaviour of the solutions of some linear functional differential equations, D. Phil., University of Oxford (1974).

[28]

N.H. Chosky, Time-lag controls: a bibliography, IRE Trans. Auto. Cont. AC-5 (1966) 66–70.

[29]

C.W. Cryer, Numerical methods for functional differential equations,*Delay and Functional Differential Equations*, ed. K. Schmitt (Academic Press, 1972).

[30]

G. Dahlquist, Recent work of stiff differential equations, Technical Report No. TRITA-NA-7512, Royal Institute of Technology, Stockholm (1975).

[31]

R.D. Driver,*Ordinary and Delay Differential Equations*, Applied Mathematics Series 20 (Springer, 1977).

[32]

E.L. El'sgol'ts,*Qualitative Methods in Mathematical Analysis*, Transl. Math. Monog. 12 (Academic Press, 1964).

[33]

E.L. El'sgol'ts and S.B. Norkin,*Introduction to the Theory and Applications of Differential Equations with Deviating Arguments*, Mathematics in Science and Engineering 105 (Academic Press, 1973).

[34]

W.H. Enright, Continuous numerical methods for ODEs and the implication for delay differential equations,*Proc. HERMIS '94 Conf.*, Athens University of Economics and Business (Sept. 1994).

[35]

W.H. Enright, The relative efficiency of alternative defect control schemes for high-order continuous Runge-Kutta formulas, SIAM J. Numer. Anal. 30 (1993) 1419–1445.

MATHCrossRefMathSciNet[36]

W.H. Enright, A new error-control for initial-value solvers, Appl. Math. Comp. 31 (1989) 288–301.

CrossRefMathSciNet[37]

W.H. Enright, Analysis of error control strategies for continuous Runge-Kutta methods, SIAM J. Numer. Anal. 26 (1989) 588–599.

MATHCrossRefMathSciNet[38]

W.H. Enright and M. Hu, Interpolating Runge-Kutta methods for vanishing lag delay differential equations, Computer Science Technical Report No. 292/94, University of Toronto (1994).

[39]

W.H. Enright, K.R. Jackson, S.P. Nørsett and P.G. Thomsen, Interpolants for Runge-Kutta formulas, ACM Trans. Math. Soft. 12 (1986) 193–218.

MATHCrossRef[40]

M.A. Feldstein, Discretization methods for retarded ordinary differential equations, Doctoral thesis, Department of Mathematics, UCLA (1964).

[41]

M.A. Feldstein and K.W. Neves, High-order methods for state-dependent delay differential equations with nonsmooth solutions, SIAM J. Numer. Anal. 21 (1984) 844–863.

MATHCrossRefMathSciNet[42]

M.A. Feldstein and J. Sopka, Numerical methods for nonlinear Volterra integro-differential equations. SIAM J. Numer. Anal. 11 (1974) 826–846.

MATHCrossRefMathSciNet[43]

K. Gopalsamy,

*Stability and Oscillations in Delay Differential Equations of Population Dynamics* (Kluwer, Dordrecht, 1992).

MATH[44]

E. Hairer, G. Wanner and S.P. Nørsett,*Solving Ordinary Differential Equations 1*, Springer Series in Computational Mathematics 8 (Springer, 1983).

[45]

A. Halanay,*Differential Equations: Stability, Oscillations, Time Lags*, Mathematics in Science and Engineering 23 (Academic Press, 1966).

[46]

H. Hayashi and W.H. Enright, A new algorithm for vanishing delay problems, Canadian Applied Mathematics Society, annual meeting, University of York (1993).

[47]

D.J. Higham, Highly continuous Runge-Kutta interpolants, ACM Trans. Math. Soft. 17 (1991) 368–386.

MATHCrossRefMathSciNet[48]

D.R. Hill, A new class of one-step methods for the solution of Volterra functional differential equations, BIT 14 (1974), 298–305.

MATHCrossRef[49]

K.J. in't Hout, Runge—Kutta methods in the numerical solution of delay differential equations, Ph.D. thesis, Department of Mathematics and Computer Science, University of Leiden (1992).

[50]

K.J. in't Hout, A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations, BIT 32 (1992) 634–649.

MATHCrossRefMathSciNet[51]

K.J. in't Hout and M.N. Spijker, Stability analysis of numerical methods for delay differential equations. Numer. Math. 59 (1991) 807–814.

MATHCrossRefMathSciNet[52]

P.J. van der Houwen and B.P. Sommeijer, Linear multistep methods with reduced truncation error for periodic initial value problems, IMA J. Num. Anal. 4 (1984) 479–489.

MATHCrossRef[53]

P.J. van der Houwen and B.P. Sommeijer, Stability in linear multistep methods for pure delay equations, J. Comp. Appl. Math. 10 (1984) 55–63.

MATHCrossRef[54]

P.J. van der Houwen, B.P. Sommeijer and C.T.H. Baker, On, the stability of predictor-corrector methods for parabolic equations with delay, IMA J. Num. Anal. 6 (1986) 1–23.

MATHCrossRef[55]

A. Iserles, Stability and dynamics of numerical methods for nonlinear ordinary differential equations, IMA J. Num Anal. 10 (1990) 1–30.

MATHCrossRefMathSciNet[56]

A. Iserles and M. Buhmann, Stability of the discretized pantograph differential-equation, Math. Comp. 60 (1993) 575–589.

MATHCrossRefMathSciNet[57]

Z. Jackiewicz, Waveform relaxation methods for functional differential systems of neutral type,*Proc. HERMIS ′94 Conf.*, Athens University of Economics and Business (Sept. 1994).

[58]

Z. Jackiewicz and E. Lo, The numerical integration of neutral functional-differential equations by fully implicit one-step methods, Technical Report No. 129, Arizona State University (1991).

[59]

F. Kappel and K. Kunisch Spline approximations for neutral functional-differential equations, SIAM J. Numer. Anal. 18 (1981) 1058–1080.

MATHCrossRefMathSciNet[60]

T. Kato, Asymptotic behaviour of solutions of the functional differential equations*ý (x)=ay(λx)+by(x)*, in:*Delay and Functional Differential Equations and Their Applications*, ed. K. Schmitt (Academic Press, 1972).

[61]

T. Kato and J.B. McLeod, The functional differential equation

*ý(x)=ay(λx)+by(x)* Bull. Amer. Math. Soc. 77 (1971) 891–937.

MATHCrossRefMathSciNet[62]

V.B. Kolmanovskii and A. Myshkis,*Applied Theory of Functional Differential Equations*, Mathematics and its Applications 85 (Kluwer, 1992).

[63]

V.B. Kolmanovskii and V.R. Nosov,*Stability of Functional Differential Equations*, Mathematics in Science and Engineering 180 (Academic Press, 1986).

[64]

P. Linz, Linear multistep methods for Volterra integro-differential equations, J. ACM 16 (1969) 295–301.

MATHCrossRefMathSciNet[65]

Y. Kuang,*Delay Differential Equations with Applications in Population Dynamics*, Mathematics in Science and Engineering 191 (Academic Press, 1993).

[66]

M.Z. Liu and M.N. Spijker, The stability of σ-methods in the numerical solution of delay differential equations, IMA J. Num. Anal. 10 (1990) 31–48.

MATHCrossRefMathSciNet[67]

Matlab, The Mathworks Inc., Natick, MA 01760.

[68]

K.W. Neves, Automatic integration of functional differential equations: an approach, ACM Trans. Math. Soft. 1 (1975) 357–368.

MATHCrossRefMathSciNet[69]

K.W. Neves and S. Thompson, Software for the numerical-solution of systems of functional-differential equations with state-dependent delay, Appl. Numer. Math. 9 (1992) 385–401.

MATHCrossRefMathSciNet[70]

K.W. Neves and M.A. Feldstein, Characterisation of jump discontinuities for state-dependent delay differential equations, J. Math. Anal. Appl. 56 (1976) 689–707.

MATHCrossRefMathSciNet[71]

H.J. Oberle and H.J. Pesch, Numerical treatment of delay differential equations by Hermite interpolation, Num. Math. 37 (1981) 235–255.

MATHCrossRefMathSciNet[72]

J. Oppelstrup, The RKFHB4 method for delay differential equations, Lecture Notes in Mathematics 631 (1978) pp. 133–146.

CrossRefMathSciNet[73]

B. Owren and M. Zennaro, Derivation of efficient, continuous explicit Runge-Kutta methods, SIAM J. Sci. Stat. Comp. 13 (1992) 1488–1501.

MATHCrossRefMathSciNet[74]

C.A.H. Paul, Performance and properties of a class of parallel continuous explicit Runge-Kutta methods for ordinary and delay differential equations,*Proc. HERMIS ′94 Conf.*, Athens University of Economics and Business (Sept. 1994).

[75]

C.A.H. Paul, Runge-Kutta methods for functional differential equations, Ph.D. thesis, Mathematics Department, University of Manchester (1992).

[76]

C.A.H. Paul, Developing a delay differential equation solver, Appl. Num. Math. 9 (1992) 403–414.

MATHCrossRef[77]

T.L. Saaty,*Modern Nonlinear Mathematics*, (Dover, New York, 1967).

[78]

L.F. Shampine, Interpolation for Runge-Kutta methods, SIAM J. Numer. Anal. 22 (1985) 1014–1026.

MATHCrossRefMathSciNet[79]

L.F. Shampine and P. Bogacki, The effect of changing the stepsize in linear multistep codes, SIAM J. Sci. Stat. Comp. 10 (1989) 1010–1023.

MATHCrossRefMathSciNet[80]

H.L. Smith and Y. Kuang, Slowly oscillating periodic-solutions of autonomous state-dependent delay equations, Nonlinear Anal. — Theory, Meth. Appl. 19 (1992) 855–872.

MATHCrossRefMathSciNet[81]

H.J. Stetter, Numerische Lösung von Differentialgleichungen mit nacheilendem Argument, ZAMM 45 (1965) 79–80.

[82]

L. Tavernini, One-step methods for the numerical solution of Volterra functional differential equations, SIAM J. Numer. Anal. 8 (1971) 786–795.

MATHCrossRefMathSciNet[83]

L. Torelli, Stability of numerical methods for delay differential equations, J. Comp. Appl. Math. 25 (1989) 15–26.

MATHCrossRefMathSciNet[84]

L. Wiederholt, Stability of multistep methods for delay differential equations, Math. Comp. 30 (1976) 283–290.

MATHCrossRefMathSciNet[85]

L. Wiederholt, Numerical solution of delay differential equations, Ph.D. thesis, University of Wisconsin (1970).

[86]

D.R. Willé, Experiments in stepsize control for Adams linear multistep methods, Technical Report No. 94-11, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, University of Heidelberg (1994).

[87]

D.R. Willé, New stepsize estimators for linear, multistep methods, Technical Report No. 93-47. Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, University of Heidelberg (1993). [Note erratum.]

[88]

D.R. Willé and C.T.H. Baker, Some issues in the detection and location of derivative discontinuities in delay-differential equations, Technical Report No. 238, University of Manchester (1994).

[89]

D.R. Willé and C.T.H. Baker, Stepsize control and continuity consistency for state-dependent delay differential equations, J. Comp. Appl. Math 53 (1994) 163–170.

MATHCrossRef[90]

D.R. Willé and C.T.H. Baker, The tracking of derivative discontinuities in systems of delay differential equations, Appl. Num. Math. 9 (1992) 209–222.

MATHCrossRef[91]

D.R. Willé and C.T.H. Baker, DELSOL — a numerical code for the solution of systems of delay differential equations, Appl. Numer. Math. 9 (1992) 223–234.

MATHCrossRef[92]

D.R. Willé and C.T.H. Baker, A short note on the propagation of derivative discontinuities in Volterra-delay integro-differential equations, Technical Report No. 187, University of Manchester (1990).

[93]

E.M. Wright, On a sequence defined by a non-linear recurrence formula, J. London Math. Soc. 20 (1945) 68–73.

MATHCrossRefMathSciNet[94]

M. Zennaro, Natural continuous extensions of Runge-Kutta methods. Math. Comp. 46 (1986) 119–133.

MATHCrossRefMathSciNet[95]

M. Zennaro,

*P*-stability properties of Runge-Kutta methods for delay differential equations, Numer. Math. 49 (1986) 305–318.

MATHCrossRefMathSciNet